96 research outputs found

    Speed and Atmosphere Influences on Nanotribological Properties of NbSe2

    Get PDF
    Nanotribological properties of NbSe2 are studied using an atomic friction force microscope. The friction force is measured as a function of normal load and scan speeds ranging from 10 nm s−1 to 40 μm s−1 under two atmospheres (air and argon). At low speed, no effect of atmosphere is noticed and a linear relationship between the friction and normal forces is observed leading to a friction coefficient close to 0.02 for both atmospheres. At high speed, the tip/surface contact obeys the JKR theory and the tribological properties are atmosphere dependent: the shear stress measured in air environment is three times lower than the one measured under argon atmosphere. A special attention is paid to interpret these results through numerical data obtained from a simple athermal model based on Tomlinson approach

    Friction properties of fluorinated carbons

    Get PDF
    In boundary lubrication regime, friction reduction and antiwear processes are associated to the presence of additives in the lubricating oils or greases. These processes are due to the formation of protective tribofilms resulting from chemical reactions between the additives and the sliding surfaces, in the physico-chemical conditions of the sliding contact. Conventional antiwear additives mainly consist of transition metal organo phosphate or thiophosphates which present a remarkable efficiency in the case of contacts between ferrous alloys. In the case of non reacting surfaces, these additives become inactive. Recently developped lubrication strategies consist in the use of dispersion in oils of nano additives able to build the protective tribofilm in the sliding contact without reaction with the surfaces. Carbon fluorinated phases, due to their lamellar structure and their high chemical stability even at relatively high temperature (400°C) represent interesting candidates as lubricant nano-additives subjected to present friction reduction, anti wear and anti corrosion actions. This work presents the tribologic behaviour of some carbon fluorinated derivatives such as graphite fluorides, fluorinated carbon nanofibers, fluorinated carbon nanodiscs and fluorinated carbon blacks. The influence, on the tribologic performances, of the structure of the initial carbon phases, of the fluorination rate (0<F/C<1) and the structure of the fluorinated compounds is discussed

    Direct observation of Anderson localization of matter-waves in a controlled disorder

    Full text link
    We report the observation of exponential localization of a Bose-Einstein condensate (BEC) released into a one-dimensional waveguide in the presence of a controlled disorder created by laser speckle . We operate in a regime allowing AL: i) weak disorder such that localization results from many quantum reflections of small amplitude; ii) atomic density small enough that interactions are negligible. We image directly the atomic density profiles vs time, and find that weak disorder can lead to the stopping of the expansion and to the formation of a stationary exponentially localized wave function, a direct signature of AL. Fitting the exponential wings, we extract the localization length, and compare it to theoretical calculations. Moreover we show that, in our one-dimensional speckle potentials whose noise spectrum has a high spatial frequency cut-off, exponential localization occurs only when the de Broglie wavelengths of the atoms in the expanding BEC are larger than an effective mobility edge corresponding to that cut-off. In the opposite case, we find that the density profiles decay algebraically, as predicted in [Phys. Rev. Lett. 98, 210401 (2007)]. The method presented here can be extended to localization of atomic quantum gases in higher dimensions, and with controlled interactions

    A study of CP violation in B-+/- -&gt; DK +/- and B-+/- -&gt; D pi(+/-) decays with D -&gt; (KSK +/-)-K-0 pi(-/+) final states

    Get PDF
    A first study of CP violation in the decay modes B±[KS0K±π]Dh±B^\pm\to [K^0_{\rm S} K^\pm \pi^\mp]_D h^\pm and B±[KS0Kπ±]Dh±B^\pm\to [K^0_{\rm S} K^\mp \pi^\pm]_D h^\pm, where hh labels a KK or π\pi meson and DD labels a D0D^0 or D0\overline{D}^0 meson, is performed. The analysis uses the LHCb data set collected in pppp collisions, corresponding to an integrated luminosity of 3 fb1^{-1}. The analysis is sensitive to the CP-violating CKM phase γ\gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of γ\gamma using other decay modes

    Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state

    Get PDF
    A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -&gt; p(p)over-bar

    Get PDF
    The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.25±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.25 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2.The production of the ηc(1S)\eta _c (1S) state in proton-proton collisions is probed via its decay to the ppp\overline{p} final state with the LHCb detector, in the rapidity range 2.06.5GeV/c2.0 6.5 \mathrm{{\,GeV/}{ c}} . The cross-section for prompt production of ηc(1S)\eta _c (1S) mesons relative to the prompt J/ψ{{ J}}/{\psi } cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.74\, \pm \,0.29\, \pm \, 0.28\, \pm \,0.18 _{{\mathcal{B}}} at a centre-of-mass energy s=7 TeV{\sqrt{s}} = 7 {~\mathrm{TeV}} using data corresponding to an integrated luminosity of 0.7 fb1^{-1} , and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{{\mathcal{B}}} at s=8 TeV{\sqrt{s}} = 8 {~\mathrm{TeV}} using 2.0 fb1^{-1} . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta _c (1S) and J/ψ{{ J}}/{\psi } decays to the ppp\overline{p} final state. In addition, the inclusive branching fraction of b{b} -hadron decays into ηc(1S)\eta _c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103{\mathcal{B}}( b {\rightarrow } \eta _c X ) = (4.88\, \pm \,0.64\, \pm \,0.29\, \pm \, 0.67 _{{\mathcal{B}}}) \times 10^{-3} , where the third uncertainty includes also the uncertainty on the J/ψ{{ J}}/{\psi } inclusive branching fraction from b{b} -hadron decays. The difference between the J/ψ{{ J}}/{\psi } and ηc(1S)\eta _c (1S) meson masses is determined to be 114.7±1.5±0.1MeV ⁣/c2114.7 \pm 1.5 \pm 0.1 {\mathrm {\,MeV\!/}c^2} .The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.29 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2

    Studies of beauty baryon decays to D0ph− and Λ+ch− final states

    Get PDF

    Search for CP violation using T-odd correlations in D-0 -&gt; K+K-pi(+)pi(-) decays

    Get PDF
    A search for CPCP violation using TT-odd correlations is performed using the four-body D0K+Kπ+πD^0 \to K^+K^-\pi^+\pi^- decay, selected from semileptonic BB decays. The data sample corresponds to integrated luminosities of 1.0fb11.0\,\text{fb}^{-1} and 2.0fb12.0\,\text{fb}^{-1} recorded at the centre-of-mass energies of 7 TeV and 8 TeV, respectively. The CPCP-violating asymmetry aCPT-odda_{CP}^{T\text{-odd}} is measured to be (0.18±0.29(stat)±0.04(syst))%(0.18\pm 0.29\text{(stat)}\pm 0.04\text{(syst)})\%. Searches for CPCP violation in different regions of phase space of the four-body decay, and as a function of the D0D^0 decay time, are also presented. No significant deviation from the CPCP conservation hypothesis is found

    Measurement of CP asymmetry in B-s(0) -&gt; D-s(-/+) K--/+ decays

    Get PDF
    We report on measurements of the time-dependent CP violating observables in Bs0DsK±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays using a dataset corresponding to 1.0 fb1^{-1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf=0.53±0.25±0.04C_f=0.53\pm0.25\pm0.04, AfΔΓ=0.37±0.42±0.20A^{\Delta\Gamma}_f=0.37\pm0.42\pm0.20, AfˉΔΓ=0.20±0.41±0.20A^{\Delta\Gamma}_{\bar{f}}=0.20\pm0.41\pm0.20, Sf=1.09±0.33±0.08S_f=-1.09\pm0.33\pm0.08, Sfˉ=0.36±0.34±0.08S_{\bar{f}}=-0.36\pm0.34\pm0.08, where the uncertainties are statistical and systematic, respectively. We use these observables to make the first measurement of the CKM angle γ\gamma in Bs0DsK±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays, finding γ\gamma = (11543+28_{-43}^{+28})^\circ modulo 180^\circ at 68% CL, where the error contains both statistical and systematic uncertainties.We report on measurements of the time-dependent CP violating observables in Bs0_{s}^{0}  → Ds_{s}^{∓} K±^{±} decays using a dataset corresponding to 1.0 fb1^{−1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf_{f} = 0.53±0.25±0.04, AfΔΓ_{f}^{ΔΓ}  = 0.37 ± 0.42 ± 0.20, AfΔΓ=0.20±0.41±0.20 {A}_{\overline{f}}^{\varDelta \varGamma }=0.20\pm 0.41\pm 0.20 , Sf_{f} = −1.09±0.33±0.08, Sf=0.36±0.34±0.08 {S}_{\overline{f}}=-0.36\pm 0.34\pm 0.08 , where the uncertainties are statistical and systematic, respectively. Using these observables together with a recent measurement of the Bs0_{s}^{0} mixing phase −2βs_{s} leads to the first extraction of the CKM angle γ from Bs0_{s}^{0}  → Ds_{s}^{∓} K±^{±} decays, finding γ = (11543+28_{− 43}^{+ 28} )° modulo 180° at 68% CL, where the error contains both statistical and systematic uncertainties.We report on measurements of the time-dependent CP violating observables in Bs0DsK±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays using a dataset corresponding to 1.0 fb1^{-1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf=0.53±0.25±0.04C_f=0.53\pm0.25\pm0.04, AfΔΓ=0.37±0.42±0.20A^{\Delta\Gamma}_f=0.37\pm0.42\pm0.20, AfˉΔΓ=0.20±0.41±0.20A^{\Delta\Gamma}_{\bar{f}}=0.20\pm0.41\pm0.20, Sf=1.09±0.33±0.08S_f=-1.09\pm0.33\pm0.08, Sfˉ=0.36±0.34±0.08S_{\bar{f}}=-0.36\pm0.34\pm0.08, where the uncertainties are statistical and systematic, respectively. Using these observables together with a recent measurement of the Bs0B^0_s mixing phase 2βs-2\beta_s leads to the first extraction of the CKM angle γ\gamma from Bs0DsK±B^0_s \rightarrow D^{\mp}_s K^{\pm} decays, finding γ\gamma = (11543+28_{-43}^{+28})^\circ modulo 180^\circ at 68% CL, where the error contains both statistical and systematic uncertainties

    Precise measurements of the properties of the B-1(5721)(0,+) and B-2*(5747)(0,+) states and observation of B-+,B-0 pi(-,+) mass structures

    Get PDF
    Invariant mass distributions of B+πB^+\pi^- and B0π+B^0\pi^+ combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0fb13.0 fb^{-1} of pppp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B1(5721)0,+B_1(5721)^{0,+} and B2(5747)0,+B_2^*(5747)^{0,+} states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 58505850-60006000 MeV in both B+πB^+\pi^- and B0π+B^0\pi^+ combinations. The structures are consistent with the presence of four excited B mesons, labelled BJ(5840)0,+B_J(5840)^{0,+} and BJ(5960)0,+B_J(5960)^{0,+}, whose masses and widths are obtained under different hypotheses for their quantum numbers.Invariant mass distributions of B+^{+} π^{−} and B0^{0} π+^{+} combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0 fb1^{−1} of pp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B1_{1}(5721)0,+^{0,+} and B2^{2}(5747)0,+^{0,+} states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 5850-6000 MeV in both B+^{+} π^{−} and B0^{0} π+^{+} combinations. The structures are consistent with the presence of four excited B mesons, labelled BJ_{J} (5840)0,+^{0,+} and BJ_{J} (5960)0,+^{0,+}, whose masses and widths are obtained under different hypotheses for their quantum numbers.Invariant mass distributions of B+pi- and B0pi+ combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0 fb-1 of pp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B_1(5721)^(0,+) and B_2*(5747)^(0,+) states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 5850--6000 MeV in both B+pi- and B0pi+ combinations. The structures are consistent with the presence of four excited B mesons, labelled B_J(5840)^(0,+) and B_J(5960)^(0,+), whose masses and widths are obtained under different hypotheses for their quantum numbers
    corecore