40 research outputs found

    Miniaturized and flexible FSS-based EM shields for conformal applications

    Get PDF
    This article reports on very efficient and highly miniaturized wideband polygon-shaped frequency selective surface (PFSS) shields for the planar and conformal applications in the X-band. These shields have been analyzed for both lossy as well as for low-loss substrates. The conformal configurations of PFSS are particularly investigated for inward, outward, and double-curved profiles useful for a variety of applications. The conformal designs have been tested for two different radii of curvatures. The models have been simulated using a hybrid simulation approach for electrically large geometries. The equivalent circuit model as well as the analytical model are determined. The proposed PFSS designs offer stable angular response up to 60° for planar and all conformal geometries on both lossy and low-loss prototypes. Shielding effectiveness of at least 55 dB and 48 dB has been measured for flat/nonconformal and conformal configurations, respectively

    Noninvasive suspicious liquid detection using wireless signals

    Get PDF
    Conventional liquid detection instruments are very expensive and not conducive to large-scale deployment. In this work, we propose a method for detecting and identifying suspicious liquids based on the dielectric constant by utilizing the radio signals at a 5G frequency band. There are three major experiments: first, we use wireless channel information (WCI) to distinguish between suspicious and nonsuspicious liquids; then we identify the type of suspicious liquids; and finally, we distinguish the different concentrations of alcohol. The K-Nearest Neighbor (KNN) algorithm is used to classify the amplitude information extracted from the WCI matrix to detect and identify liquids, which is suitable for multimodal problems and easy to implement without training. The experimental result analysis showed that our method could detect more than 98% of the suspicious liquids, identify more than 97% of the suspicious liquid types, and distinguish up to 94% of the different concentrations of alcohol

    Social sensing for sentiment analysis of policing authority performance in smart cities

    Get PDF
    High-tech services in smart cities, ubiquity of smart phones, and proliferation of social media platforms have enabled social sensing, either through direct human observers or through humans as sensor carriers and operators, such as through the use of smart phones, cameras, etc. We performed a sentiment analysis (SA) and mined public opinion on the civil services and policing authority in a smart city. The establishment of high-tech policing in Lahore, Pakistan, known as the Punjab Safe Cities Authority (PSCA), Lahore, along with integrated command and control centers and various equipments, such as 8,000 cameras, monitoring sensors, etc., has resulted in a requirement for its performance evaluation and social media–enabled opinion mining to determine the broader impact on communities. Social sensing of civil services has been enabled through the presence of the PSCA on Facebook, Twitter, YouTube, and Web TV. The SA of the local civil services is not possible without taking into account the local language. In this article, we utilize machine learning techniques to perform multi-class SA of public opinion on policing authority and the provided civil services in both the local languages Urdu and English. The support vector machine provides the highest performance multi-classification accuracy of 86.87% for positive, negative, and neutral sentiments. The temporal sentiments are determined over time from January 2020 to July 2021, with an overall positive sentiment of 62.40% and a negative sentiment of 13.51%, which shows high satisfaction of policing authority and the provided civil services

    Improving Machine Learning Classification Accuracy for Breathing Abnormalities by Enhancing Dataset

    Get PDF
    The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus disease (COVID)-19, has appeared as a global pandemic with a high mortality rate. The main complication of COVID-19 is rapid respirational deterioration, which may cause life-threatening pneumonia conditions. Global healthcare systems are currently facing a scarcity of resources to assist critical patients simultaneously. Indeed, non-critical patients are mostly advised to self-isolate or quarantine themselves at home. However, there are limited healthcare services available during self-isolation at home. According to research, nearly 20–30% of COVID patients require hospitalization, while almost 5–12% of patients may require intensive care due to severe health conditions. This pandemic requires global healthcare systems that are intelligent, secure, and reliable. Tremendous efforts have been made already to develop non-contact sensing technologies for the diagnosis of COVID-19. The most significant early indication of COVID-19 is rapid and abnormal breathing. In this research work, RF-based technology is used to collect real-time breathing abnormalities data. Subsequently, based on this data, a large dataset of simulated breathing abnormalities is generated using the curve fitting technique for developing a machine learning (ML) classification model. The advantages of generating simulated breathing abnormalities data are two-fold; it will help counter the daunting and time-consuming task of real-time data collection and improve the ML model accuracy. Several ML algorithms are exploited to classify eight breathing abnormalities: eupnea, bradypnea, tachypnea, Biot, sighing, Kussmaul, Cheyne–Stokes, and central sleep apnea (CSA). The performance of ML algorithms is evaluated based on accuracy, prediction speed, and training time for real-time breathing data and simulated breathing data. The results show that the proposed platform for real-time data classifies breathing patterns with a maximum accuracy of 97.5%, whereas by introducing simulated breathing data, the accuracy increases up to 99.3%. This work has a notable medical impact, as the introduced method mitigates the challenge of data collection to build a realistic model of a large dataset during the pandemic

    RF Sensing Based Breathing Patterns Detection Leveraging USRP Devices

    Get PDF
    Non-contact detection of the breathing patterns in a remote and unobtrusive manner has significant value to healthcare applications and disease diagnosis, such as in COVID-19 infection prediction. During the epidemic prevention and control period of COVID-19, non-contact approaches have great significance because they minimize the physical burden on the patient and have the least requirement of active cooperation of the infected individual. During the pandemic, these non-contact approaches also reduce environmental constraints and remove the need for extra preparations. According to the latest medical research, the breathing pattern of a person infected with COVID-19 is unlike the breathing associated with flu and the common cold. One noteworthy symptom that occurs in COVID-19 is an abnormal breathing rate; individuals infected with COVID-19 have more rapid breathing. This requires continuous real-time detection of breathing patterns, which can be helpful in the prediction, diagnosis, and screening for people infected with COVID-19. In this research work, software-defined radio (SDR)-based radio frequency (RF) sensing techniques and machine learning (ML) algorithms are exploited to develop a platform for the detection and classification of different abnormal breathing patterns. ML algorithms are used for classification purposes, and their performance is evaluated on the basis of accuracy, prediction speed, and training time. The results show that this platform can detect and classify breathing patterns with a maximum accuracy of 99.4% through a complex tree algorithm. This research has a significant clinical impact because this platform can also be deployed for practical use in pandemic and non-pandemic situations

    Development of an Intelligent Real-time Multi-Person Respiratory Illnesses Sensing System using SDR Technology

    Get PDF
    Respiration monitoring plays a vital role in human health monitoring, as it is an essential indicator of vital signs. Respiration monitoring can help determine the physiological state of the human body and provide insight into certain illnesses. Recently, non-contact respiratory illness sensing methods have drawn much attention due to user acceptance and great potential for real-world deployment. Such methods can reduce stress on healthcare facilities by providing modern digital health technologies. This digital revolution in the healthcare sector will provide inexpensive and unobstructed solutions. Non-contact respiratory illness sensing is effective as it does not require users to carry devices and avoids privacy concerns. The primary objective of this research work is to develop a system for continuous real-time sensing of respiratory illnesses. In this research work, the non-contact software-defined radio (SDR) based RF technique is exploited for respiratory illness sensing. The developed system measures respiratory activity imprints on channel state information (CSI). For this purpose, an orthogonal frequency division multiplexing (OFDM) transceiver is designed, and the developed system is tested for single-person and multi-person cases. Nine respiratory illnesses are detected and classified using machine learning algorithms (ML) with maximum accuracy of 99.7% for a single-person case. Three respiratory illnesses are detected and classified with a maximum accuracy of 93.5% and 88.4% for two- and three-person cases, respectively. The research provides an intelligent, accurate, continuous, and real-time solution for respiratory illness sensing. Furthermore, the developed system can also be deployed in office and home environments

    Non-contact smart sensing of physical activities during quarantine period using SDR technology

    Get PDF
    The global pandemic of the coronavirus disease (COVID-19) is dramatically changing the lives of humans and results in limitation of activities, especially physical activities, which lead to various health issues such as cardiovascular, diabetes, and gout. Physical activities are often viewed as a double-edged sword. On the one hand, it offers enormous health benefits; on the other hand, it can cause irreparable damage to health. Falls during physical activities are a significant cause of fatal and non-fatal injuries. Therefore, continuous monitoring of physical activities is crucial during the quarantine period to detect falls. Even though wearable sensors can detect and recognize human physical activities, in a pandemic crisis, it is not a realistic approach. Smart sensing with the support of smartphones and other wireless devices in a non-contact manner is a promising solution for continuously monitoring physical activities and assisting patients suffering from serious health issues. In this research, a non-contact smart sensing through the walls (TTW) platform is developed to monitor human physical activities during the quarantine period using software-defined radio (SDR) technology. The developed platform is intelligent, flexible, portable, and has multi-functional capabilities. The received orthogonal frequency division multiplexing (OFDM) signals with fine-grained 64-subcarriers wireless channel state information (WCSI) are exploited for classifying different activities by applying machine learning algorithms. The fall activity is classified separately from standing, walking, running, and bending with an accuracy of 99.7% by using a fine tree algorithm. This preliminary smart sensing opens new research directions to detect COVID-19 symptoms and monitor non-communicable and communicable diseases

    Contactless Small-Scale Movement Monitoring System Using Software Defined Radio for Early Diagnosis of COVID-19

    Get PDF
    The exponential growth of the novel coronavirus disease (N-COVID-19) has affected millions of people already and it is obvious that this crisis is global. This situation has enforced scientific researchers to gather their efforts to contain the virus. In this pandemic situation, health monitoring and human movements are getting significant consideration in the field of healthcare and as a result, it has emerged as a key area of interest in recent times. This requires a contactless sensing platform for detection of COVID-19 symptoms along with containment of virus spread by limiting and monitoring human movements. In this paper, a platform is proposed for the detection of COVID-19 symptoms like irregular breathing and coughing in addition to monitoring human movements using Software Defined Radio (SDR) technology. This platform uses Channel Frequency Response (CFR) to record the minute changes in Orthogonal Frequency Division Multiplexing (OFDM) subcarriers due to any human motion over the wireless channel. In this initial research, the capabilities of the platform are analyzed by detecting hand movement, coughing, and breathing. This platform faithfully captures normal, slow, and fast breathing at a rate of 20, 10, and 28 breaths per minute respectively using different methods such as zero-cross detection, peak detection, and Fourier transformation. The results show that all three methods successfully record breathing rate. The proposed platform is portable, flexible, and has multifunctional capabilities. This platform can be exploited for other human body movements and health abnormalities by further classification using artificial intelligence

    Enhancing system performance through objective feature scoring of multiple persons' breathing using non-contact RF approach

    Get PDF
    Breathing monitoring is an efficient way of human health sensing and predicting numerous diseases. Various contact and non-contact-based methods are discussed in the literature for breathing monitoring. Radio frequency (RF)-based breathing monitoring has recently gained enormous popularity among non-contact methods. This method eliminates privacy concerns and the need for users to carry a device. In addition, such methods can reduce stress on healthcare facilities by providing intelligent digital health technologies. These intelligent digital technologies utilize a machine learning (ML)-based system for classifying breathing abnormalities. Despite advances in ML-based systems, the increasing dimensionality of data poses a significant challenge, as unrelated features can significantly impact the developed system’s performance. Optimal feature scoring may appear to be a viable solution to this problem, as it has the potential to improve system performance significantly. Initially, in this study, software-defined radio (SDR) and RF sensing techniques were used to develop a breathing monitoring system. Minute variations in wireless channel state information (CSI) due to breathing movement were used to detect breathing abnormalities in breathing patterns. Furthermore, ML algorithms intelligently classified breathing abnormalities in single and multiple-person scenarios. The results were validated by referencing a wearable sensor. Finally, optimal feature scoring was used to improve the developed system’s performance in terms of accuracy, training time, and prediction speed. The results showed that optimal feature scoring can help achieve maximum accuracy of up to 93.8% and 91.7% for single-person and multi-person scenarios, respectively
    corecore