49 research outputs found

    Electrical transition of (3,3) carbon nanotube on patterned hydrogen terminated Si(001)-2 x 1 driven by electric field

    Get PDF
    Structure, energetics, and electrical properties of (3,3) carbon nanotube(CNT) supported on patterned hydrogen terminated Si(001): 2 × 1 surface are studied using density functional theory. Our investigation reveals that an otherwise metallic (3,3) CNT when supported becomes semiconducting with a band gap of ≈0.5 eV due to its strong interaction with the surface. During adsorption, Si-C bonds form at the interface and charges transfer from Si surface to CNT. The Si-C bonds at the interface are partially covalent and partially ionic in nature. Under the application of an external electric field, the bandgap of the supported CNT reduces to zero, hence rendering the system metallic

    Structural studies of phosphorus induced dimers on Si(001)

    Full text link
    Renewed focus on the P-Si system due to its potential application in quantum computing and self-directed growth of molecular wires, has led us to study structural changes induced by P upon placement on Si(001)-p(2×1)p(2\times 1). Using first-principles density functional theory (DFT) based pseudopotential method, we have performed calculations for P-Si(001) system, starting from an isolated P atom on the surface, and systematically increasing the coverage up to a full monolayer. An isolated P atom can favorably be placed on an {\bf M} site between two atoms of adjacent Si dimers belonging to the same Si dimer row. But being incorporated in the surface is even more energetically beneficial due to the participation of the {\bf M} site as a receptor for the ejected Si. Our calculations show that up to 1/8 monolayer coverage, hetero-dimer structure resulting from replacement of surface Si atoms with P is energetically favorable. Recently observed zig-zag features in STM are found to be consistent with this replacement process. As coverage increases, the hetero-dimers give way to P-P ortho-dimers on the Si dimer rows. This behavior is similar to that of Si-Si d-dimers but are to be contrasted with the Al-Al dimers, which are found between adjacent Si dimers rows and in a para-dimer arrangement. Unlike Al-Si system P-Si does not show any para to ortho transition. For both systems, the surface reconstruction is lifted at about one monolayer coverage. These calculations help us in understanding the experimental data obtained using scanning tunneling microscope.Comment: To appear in PR

    Stationary localized states due to nonlinear impurities described by the modified discrete nonlinear Schr\"odinger equation

    Full text link
    The modified discrete nonlinear Schr\"odinger equation is used to study the formation of stationary localized states in a one-dimensional lattice with a single impurity and an asymmetric dimer impurity. A periodically modulated and a perfectly nonlinear chain is also considered. Phase diagrams of localized states for all systems are presented. From the mean square displacement calculation, it is found that all states are not localized even though the system comprises random nonlinear site energies. Stability of the states is discussed.Comment: Six pages including five figure

    New way to achieve chaotic synchronization in spatially extended systems

    Full text link
    We study the spatio-temporal behavior of simple coupled map lattices with periodic boundary conditions. The local dynamics is governed by two maps, namely, the sine circle map and the logistic map respectively. It is found that even though the spatial behavior is irregular for the regularly coupled (nearest neighbor coupling) system, the spatially synchronized (chaotic synchronization) as well as periodic solution may be obtained by the introduction of three long range couplings at the cost of three nearest neighbor couplings.Comment: 5 pages (revtex), 7 figures (eps, included
    corecore