3 research outputs found

    First system for fully-automated multi-criterial treatment planning for a high-magnetic field MR-Linac applied to rectal cancer

    Get PDF
    Background and purpose: In this study we developed a workflow for fully-automated generation of deliverable IMRT plans for a 1.5 T MR-Linac (MRL) based on contoured CT scans, and we evaluated automated MRL planning for rectal cancer. Methods: The Monte Carlo dose calculation engine used in the clinical MRL TPS (Monaco, Elekta AB, Stockholm, Sweden), suited for high accuracy dose calculations in a 1.5 T magnetic field, was coupled to our in-house developed Erasmus-iCycle optimizer. Clinically deliverable plans for 23 rectal cancer patients were automatically generated in a two-step process, i.e., multi-criterial fluence map optimization with Erasmus-iCycle followed by a conversion into a deliverable IMRT plan in the clinical TPS. Automatically generated plans (AUTOplans) were compared to plans that were manually generated with the clinical TPS (MANplans). Results: With AUTOplanning large reductions in planning time and workload were obtained; 4–6 h mainly hands-on planning for MANplans vs 1 h of mainly computer computation time for AUTOplans. For equal target coverage, the bladder and bowel bag Dmean was reduced in the AUTOplans by 1.3 Gy (6.9%) on average with a maximum reduction of 4.5 Gy (23.8%). Dosimetric measurements at the MRL demonstrated clinically acceptable delivery accuracy for the AUTOplans. Conclusions: A system for fully automated multi-criterial planning for a 1.5 T MR-Linac was developed and tested for rectal cancer patients. Automated planning resulted in major reductions in planning workload and time, while plan quality improved. Negative impact of the high magnetic field on the dose distributions could be avoided

    PLS3 Mutations in X-Linked Osteoporosis with Fractures

    No full text
    <p>Plastin 3 (PLS3), a protein involved in the formation of filamentous actin (F-actin) bundles, appears to be important in human bone health, on the basis of pathogenic variants in PLS3 in five families with X-linked osteoporosis and osteoporotic fractures that we report here. The bone-regulatory properties of PLS3 were supported by in vivo analyses in zebrafish. Furthermore, in an additional five families (described in less detail) referred for diagnosis or ruling out of osteogenesis imperfecta type I, a rare variant (rs140121121) in PLS3 was found. This variant was also associated with a risk of fracture among elderly heterozygous women that was two times as high as that among noncarriers, which indicates that genetic variation in PLS3 is a novel etiologic factor involved in common, multi-factorial osteoporosis.</p>
    corecore