20 research outputs found

    Recent Progress in STIR 5.0

    Get PDF
    STIR is an open source software for Emission Tomography data manipulation and image reconstruction, covering both PET and SPECT. In this work recent additions to the STIR code base are highlighted, namely the ability to read General Electric (GE) Raw Data Format 9 (RDF9) files, incorporation of GPU operators for forward and back projection, as well as work towards quantitative imaging for both PET and SPECT

    PET/CT Respiratory Motion Correction With a Single Attenuation Map Using NAC Derived Deformation Fields

    Get PDF
    Respiratory motion correction is beneficial in positron emission tomography. Different strategies for handling attenuation correction in conjunction with motion correction exist. In clinical practice, usually a single attenuation map is available, derived from computed tomography in one respiratory state. This can introduce an unwanted bias (through misaligned anatomy) into the motion correction algorithm. This paper builds upon previous work which suggested that non-attenuation corrected data was suitable for motion estimation, through the use of motion models, if time-of-flight data are available. Here, the previous work is expanded upon by incorporating attenuation correction in an iterative process. Non-attenuation corrected volumes are reconstructed using ordered subset expectation maximisation and used as input for motion model estimation. A single attenuation map is then warped to the volumes, using the motion model, the volumes are attenuation corrected, after which another motion estimation and correction cycle is performed. For validation, 4-Dimensional Extended Cardiac Torso simulations are used, for one bed position, with a field of view including the base of the lungs and the diaphragm. The output from the proposed method is evaluated against a non-motion corrected reconstruction of the same data visually, using a profile as well as standardised uptake value analysis. Results indicate that motion correction of inter-respiratory cycle motion is possible with this method, while accounting for attenuation deformatio

    Effects of fast x-ray cone-beam tomographic measurement on dimensional metrology

    No full text
    Abstract X-ray computed tomography (XCT) is increasingly used for dimensional metrology, where it can offer accurate measurements of internal features that are not accessible with other techniques. However, XCT scanning can be relatively slow, which often prevents routine uptake for many applications. This paper explores the feasibility of improving the speed of XCT measurements while maintaining the quality of the dimensional measurements derived from reconstructed volumes. In particular, we compare two approaches to fast XCT acquisition, the use of fewer XCT projections as well as the use of shortened x-ray exposure times for each projection. The study shows that the additional Poisson noise produced by reducing the exposure for each projection has significantly less impact on dimensional measurements compared to the artefacts associated with strategies that take fewer projection images, leading to about half the measurement error variability. Advanced reconstruction algorithms such as the conjugate gradient least squares method or total variation constrained approaches, are shown to allow further improvements in measurement speed, though this can come at the cost of increased measurement bias (e.g. 2.8% increase in relative error in one example) and variance (e.g. 25% in the same example).</jats:p
    corecore