2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)
Abstract
Respiratory motion correction is beneficial in positron emission tomography. Different strategies for handling attenuation correction in conjunction with motion correction exist. In clinical practice, usually a single attenuation map is available, derived from computed tomography in one respiratory state. This can introduce an unwanted bias (through misaligned anatomy) into the motion correction algorithm. This paper builds upon previous work which suggested that non-attenuation corrected data was suitable for motion estimation, through the use of motion models, if time-of-flight data are available. Here, the previous work is expanded upon by incorporating attenuation correction in an iterative process. Non-attenuation corrected volumes are reconstructed using ordered subset expectation maximisation and used as input for motion model estimation. A single attenuation map is then warped to the volumes, using the motion model, the volumes are attenuation corrected, after which another motion estimation and correction cycle is performed. For validation, 4-Dimensional Extended Cardiac Torso simulations are used, for one bed position, with a field of view including the base of the lungs and the diaphragm. The output from the proposed method is evaluated against a non-motion corrected reconstruction of the same data visually, using a profile as well as standardised uptake value analysis. Results indicate that motion correction of inter-respiratory cycle motion is possible with this method, while accounting for attenuation deformatio