274 research outputs found

    Current-current correlations in hybrid superconducting and normal metal multiterminal structures

    Full text link
    We consider a hybrid system consisting of two normal metal leads weakly connected to a superconductor. Current-current correlations of the normal leads are studied in the tunneling limit at subgap voltages and temperatures. We find that only two processes contribute to the cross-correlation: the crossed Andreev reflection (emission of electrons in different leads) and the elastic cotunneling. Both processes are possible due to the finite size of the Cooper pair. Noise measurements can thus be used to probe directly the superconducting wave function without the drawbacks appearing in average current measurements where the current is dominated by direct Andreev reflection processes. By tuning the voltages it is possible to change the sign of the cross correlation. Quantitative predictions are presented both in the diffusive and ballistic regimes.Comment: 7 pages, 2 Figure

    Impaired fatty acid metabolism perpetuates lipotoxicity along the transition to chronic kidney injury.

    Get PDF
    Energy metabolism failure in proximal tubule cells (PTCs) is a hallmark of chronic kidney injury. We combined transcriptomic, metabolomic, and lipidomic approaches in experimental models and patient cohorts to investigate the molecular basis of the progression to chronic kidney allograft injury initiated by ischemia/reperfusion injury (IRI). The urinary metabolome of kidney transplant recipients with chronic allograft injury and who experienced severe IRI was substantially enriched with long chain fatty acids (FAs). We identified a renal FA-related gene signature with low levels of carnitine palmitoyltransferase 2 (Cpt2) and acyl-CoA synthetase medium chain family member 5 (Acsm5) and high levels of acyl-CoA synthetase long chain family member 4 and 5 (Acsl4 and Acsl5) associated with IRI, transition to chronic injury, and established chronic kidney disease in mouse models and kidney transplant recipients. The findings were consistent with the presence of Cpt2-Acsl4+Acsl5+Acsm5- PTCs failing to recover from IRI as identified by single-nucleus RNA-Seq. In vitro experiments indicated that ER stress contributed to CPT2 repression, which, in turn, promoted lipids' accumulation, drove profibrogenic epithelial phenotypic changes, and activated the unfolded protein response. ER stress through CPT2 inhibition and lipid accumulation engaged an auto-amplification loop leading to lipotoxicity and self-sustained cellular stress. Thus, IRI imprints a persistent FA metabolism disturbance in the proximal tubule, sustaining the progression to chronic kidney allograft injury

    Three allele combinations associated with Multiple Sclerosis

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) is an immune-mediated disease of polygenic etiology. Dissection of its genetic background is a complex problem, because of the combinatorial possibilities of gene-gene interactions. As genotyping methods improve throughput, approaches that can explore multigene interactions appropriately should lead to improved understanding of MS. METHODS: 286 unrelated patients with definite MS and 362 unrelated healthy controls of Russian descent were genotyped at polymorphic loci (including SNPs, repeat polymorphisms, and an insertion/deletion) of the DRB1, TNF, LT, TGFβ1, CCR5 and CTLA4 genes and TNFa and TNFb microsatellites. Each allele carriership in patients and controls was compared by Fisher's exact test, and disease-associated combinations of alleles in the data set were sought using a Bayesian Markov chain Monte Carlo-based method recently developed by our group. RESULTS: We identified two previously unknown MS-associated tri-allelic combinations: -509TGFβ1*C, DRB1*18(3), CTLA4*G and -238TNF*B1,-308TNF*A2, CTLA4*G, which perfectly separate MS cases from controls, at least in the present sample. The previously described DRB1*15(2) allele, the microsatellite TNFa9 allele and the biallelic combination CCR5Δ32, DRB1*04 were also reidentified as MS-associated. CONCLUSION: These results represent an independent validation of MS association with DRB1*15(2) and TNFa9 in Russians and are the first to find the interplay of three loci in conferring susceptibility to MS. They demonstrate the efficacy of our approach for the identification of complex-disease-associated combinations of alleles

    Current status of haploidentical stem cell transplantation for leukemia

    Get PDF
    Haploidentical hematopoietic stem cell transplantation has made tremendous progress over the past 20 years and has become a feasible option for leukemia patients without a HLA identical sibling donor. The early complications of severe graft-versus-host disease (GVHD), graft failure and delayed engraftment, as well as disease recurrence have limited the use of this approach. Newer strategies have been applied and overcome some of the problems, including the use of T-cell depleted graft, "mega" dose of stem cells, intensive post-transplant immunosuppression and manipulation of the graft. These have decreased the transplant related mortality and GVHD associated with haploidentical transplantation, however, the major problems of disease relapse and infection, which related to late immune reconstitution, limit the development of haploidentical HSCT. Future challenges remain in improving post-transplant immune reconstitution and finding the best approach to reduce the incidence and severity of GVHD, while preserving graft-versus-leukemia effect to prevent the recurrence of underlying malignancy

    Modulation of Macrophage Activation State Protects Tissue from Necrosis during Critical Limb Ischemia in Thrombospondin-1-Deficient Mice

    Get PDF
    International audienceBACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI). However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1) is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/-) mice subjected to femoral artery excision, we report that tsp-1(-/-) mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/-) and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/-) mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/-) mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/-) mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue repair during CLI. Furthermore, our data suggest that phagocytosis plays a crucial role in promoting a deleterious intra-tissular pro-inflammatory macrophage activation state during critical injuries. Finally, our results describe TSP-1 as a new relevant physiological target during critical leg ischemia

    Allelotype influence at glutathione S-transferase M1 locus on breast cancer susceptibility

    Get PDF
    The influence of polymorphisms of the glutathione S-transferase gene GSTM1 in breast cancer susceptibility has been assessed in this study. Previous studies correlated the absence of the GSTM1 protein with an increased risk of developing some cancers, especially lung or bladder cancers, in heavy smokers. In this study, we determined GSTM1 polymorphisms in a population of 437 female controls from the west of France and 361 community breast cancer patients. Three distinct alleles of this gene exist: GSTM1* A, GSTM1*B and GSTM1*0 (deleted allele). Null subjects (GSTM1 null) are homozygous for this deletion. The comparative analysis of GSTM1 allelotypes in our two populations did not demonstrate a statistically significant difference in distribution (P = 0.22), although the null genotype was more frequent in cancer patients. However, breast cancer risk was increased in null subjects ≥ 50 years of age compared with non-null subjects [odds ratio = 1.99 (1.19–3.32), P = 0.009], but not in null subjects < 50 years of age compared with non-null subjects (P = 0.86). Our results suggest that the GSTM1 null genotype may play a role in post-menopausal breast cancer development. They also point to a putative protective role of the A allele in the older female control group, especially in hemizygous subjects [odds ratio = 0.42 (0.23–0.77), P = 0.03]. © 1999 Cancer Research Campaig

    International money markets: eurocurrencies

    Get PDF
    Eurocurrencies are international markets for short-term wholesale bank deposits and loans. They emerged in Western Europe in the late 1950s and rapidly reached a global scale. A Eurocurrency is a form of bank money: an unsecured short-term bank debt denominated in a currency (for instance, US dollars) but issued by banks operating offshore, in a geographical location or a legal space situated outside of the jurisdiction of the national authorities presiding over that currency (for instance, the Federal Reserve). In Eurocurrency markets, banks intermediate mainly between foreign residents. They borrow funds by "accepting" foreign currency deposits and lend foreign currency-denominated funds by "placing" deposits with other banks, by granting short-term loans or investing in other liquid assets. Historically, Eurodollars accounted for the largest share of Eurocurrencies, although other international currencies (Deutsche Marks, Japanese yens, and especially Euros since 1999) played an important role. Eurocurrency markets were a manifestation of financial integration and interdependence in a globalizing economy and performed critical functions in the distribution and creation of international liquidity. At the same time, their fast growth was a recurrent source of concerns for central bankers and policymakers due to their implications for macroeconomic policies and financial stability. This chapter analyzes different aspects of the historical development of Eurocurrency markets and their role in the international monetary and financial system. The first part discusses theoretical interpretations, presents estimates of markets' size, describes their structure, and explains the determinants of their growth. The second part analyzes the spread between Eurodollar rates and other US money market rates, the role of arbitrage, the evolution of risk factors, and the causes of historical episodes of stress and contagion in the interbank market. The last part discusses political economy issues, such as the role of governments and market forces in the emergence of Eurodollars in the 1950s and the failed attempts to impose multilateral controls on Eurocurrency markets in the 1970s
    corecore