1,886 research outputs found

    Hydrostatic testing of porous assemblies

    Get PDF
    Pores of the material were plugged with dust particles suspended in water. The plugging material used was a standard test dust prepared as a slurry in distilled water. This technique provides a permanent high-integrity seal for porous material without affecting its physical properties, yet permitting pressure testing to verify structural adequacy

    Elastic-plastic stress concentrations around crack-like notches in continuous fiber reinforced metal matrix composites

    Get PDF
    Continuous fiber silicon-carbide/aluminum composite laminates with slits were tested statically to failure. Five different layups were examined: (0) sub 8, (0 sub 2/ + or - 45) sub s, (0/90) sub 2s), (0/ + or - 45/90 sub s), and (+ or - 45) sub 2s. Either a 9.5 or a 19 mm slit was machined in the center of each specimen. The strain distribution ahead of the slit tip was found experimentally with a series of strain gages bonded ahead of the slit tip. A three-dimensional finite element program (PAFAC) was used to predict the strain distribution ahead of the slit tip for several layups. For all layups, except the (0) sub 8, the yielding of the metal matrix caused the fiber stress concentration factor to increase with increasing load. This is contrary to the behavior seen in homogeneous materials where yielding causes the stress concentration to drop. For the (0) sub 8 laminate, yielding of the matrix caused a decrease in the fiber stress concentration. The finite element analysis predicted these trends correctly

    The T1 state of p-nitroaniline and related molecules: a CNDO/S study

    Get PDF
    The nature of the lowest energy triplet state (T1) of p-nitroaniline (PNA), N,N-dimethyl-p-nitroaniline (DMPNA) and nitrobenzene (NB) is reexamd. using the semiempirical CNDO/S-CI method with selected parameter options. In the case of the unperturbed mols. the short-axis polarized p* A- singlet excitation. Computations suggest, however, that polar solvents strongly stabilize the PNA and DMPNA p* <- p charge-transfer triplet relative to other excitations, whereas specific solvent hydrogen-bonded interactions stabilize the p* <- n(s) triplet of NB below those of p* <- p character. These assignments allow a rationalization of phosphorescence lifetime data, Tn <- T1 absorption measurements and relative photochem. behavior

    Effect of fiber-matrix debonding on notched strength of titanium metal matrix composites

    Get PDF
    Two specimen configuration of a (0/90)2s SCS-6/Ti-15-3 laminate were tested and analyzed: a center hole (CH) specimen and a double edge notch (DEN) specimen. The two specimen configurations failed at similar stress levels. Two analytical techniques, a 3-D finite-element analysis and a macro-micromechanical analysis were used to predict the overall stress-deformation behavior and the notch-tip fiber-matrix interface stresses in both configurations

    An improved boundary force method for analyzing cracked anisotropic materials

    Get PDF
    The Boundary Force Method (BFM), a form of indirect boundary element method, is used to analyze composite laminates with cracks. The BFM uses the orthotropic elasticity solution for a concentrated horizontal and vertical force and a moment applied at a point in a cracked, infinite sheet as the fundamental solution. The necessary stress functions for this fundamental solution were formulated using the complex variable theory of orthotropic elasticity. The current method is an improvement over a previous method using only forces and no moment. The improved method was verified by comparing it to accepted solutions for a finite-width, center-crack specimen subjected to uniaxial tension. Four graphite/epoxy laminates were used: (0 + or - 45/90)sub s, (0), (+ or - 45)sub s, and (+ or - 30)sub s. The BFM results agreed well with accepted solutions. Convergence studies showed that with the addition of the moment in the fundamental solution, the number of boundary elements required for a converged solution was significantly reduced. Parametric studies were done for two configurations for which no orthotropic solutions are currently available; a single edge crack and an inclined single edge crack

    Fatigue damage in cross-ply titanium metal matrix composites containing center holes

    Get PDF
    The development of fatigue damage in (0/90) sub SCS-6/TI-15-3 laminates containing center holes was studied. Stress levels required for crack initiation in the matrix were predicted using an effective strain parameter and compared to experimental results. Damage progression was monitored at various stages of fatigue loading. In general, a saturated state of damage consisting of matrix cracks and fiber matrix debonding was obtained which reduced the composite modulus. Matrix cracks were bridged by the 0 deg fibers. The fatigue limit (stress causing catastrophic fracture of the laminates) was also determined. The static and post fatigue residual strengths were accurately predicted using a three dimensional elastic-plastic finite element analysis. The matrix damage that occurred during fatigue loading significantly reduced the notched strength

    A study to determine an efficient data format and data system for a lightweight deep space probe

    Get PDF
    Design of spacebore central data system for solar probe

    Experimental and analytical investigation of the fracture processes of boron/aluminum laminates containing notches

    Get PDF
    Experimental results for five laminate orientations of boron/aluminum composites containing either circular holes or crack-like slits are presented. Specimen stress-strain behavior, stress at first fiber failure, and ultimate strength were determined. Radiographs were used to monitor the fracture process. The specimens were analyzed with a three-dimensional elastic-elastic finite-element model. The first fiber failures in notched specimens with laminate orientation occurred at or very near the specimen ultimate strength. For notched unidirectional specimens, the first fiber failure occurred at approximately one-half of the specimen ultimate strength. Acoustic emission events correlated with fiber breaks in unidirectional composites, but did not for other laminates. Circular holes and crack-like slits of the same characteristic length were found to produce approximately the same strength reduction. The predicted stress-strain responses and stress at first fiber failure compared very well with test data for laminates containing 0 deg fibers

    Atmospheric frontal zone studies

    Get PDF
    The research supported by this contract and directed Activities in the inversion and interpretation of data produced by the Nimbus-7 scanning multichannel microwave radiometer (SMMR) are reported. There were five principal subjects: (1) modeling of the emissivity of foam patches on the ocean surface; (2) inversion of radiometric data by a multidimensional algorithm; (3) an operational water vapor retrieval algorithm; (4) inference of Antarctic firm accumulation rates; and (5) inference of water vapor over the Arctic sea ice
    • …
    corecore