2,599 research outputs found
Subsonic and supersonic jet flow and acoustic characteristics and supersonic suppressors
To study the similarities and differences between subsonic and supersonic jets, velocity and impact pressure fluctuations were determined along the axis over a jet Mach number range of 0.6 to 1.4 for a 2 in. diameter convergent nozzle and for a one inch diameter jet flow. Static pressure distribution fluctuations due to shear and turbulence in the jet flow for subsonic and supersonic jets were related to acoustic radiation to the far field. Also determined were flow and acoustic characteristics of a single shroud, and multiple shroud tube and shroud suppressors for supersonic and subsonic exhaust velocities. A compressor consisting of 191 tubes and 191 shrouds decreased the primary Mach number drastically for both jet Mach numbers of 1.4 and 0.7; rms impact and static pressure fluctuations on the axis were also reduced from values existing for an equivalent area single nozzle
Mean and fluctuating velocity contours and acoustic characteristics of subsonic and supersonic jets
Shadowgraph photographs of subsonic and supersonic jet
Bostonia. Volume 14
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Atmospheric frontal zone studies
The research supported by this contract and directed Activities in the inversion and interpretation of data produced by the Nimbus-7 scanning multichannel microwave radiometer (SMMR) are reported. There were five principal subjects: (1) modeling of the emissivity of foam patches on the ocean surface; (2) inversion of radiometric data by a multidimensional algorithm; (3) an operational water vapor retrieval algorithm; (4) inference of Antarctic firm accumulation rates; and (5) inference of water vapor over the Arctic sea ice
Structural phase transitions of vortex matter in an optical lattice
We consider the vortex structure of a rapidly rotating trapped atomic
Bose-Einstein condensate in the presence of a co-rotating periodic optical
lattice potential. We observe a rich variety of structural phases which reflect
the interplay of the vortex-vortex and vortex-lattice interactions. The lattice
structure is very sensitive to the ratio of vortices to pinning sites and we
observe structural phase transitions and domain formation as this ratio is
varied.Comment: 4 pages, 3 figure
Excitation spectroscopy of vortex lattices in a rotating Bose-Einstein condensate
Excitation spectroscopy of vortex lattices in rotating Bose-Einstein
condensates is described. We numerically obtain the Bogoliubov-deGenne
quasiparticle excitations for a broad range of energies and analyze them in the
context of the complex dynamics of the system. Our work is carried out in a
regime in which standard hydrodynamic assumptions do not hold, and includes
features not readily contained within existing treatments.Comment: 4 pages, 4 figures. Submitted for publicatio
C. elegans mutant identification with a one-step whole-genome-sequencing and SNP mapping strategy.
Whole-genome sequencing (WGS) is becoming a fast and cost-effective method to pinpoint molecular lesions in mutagenized genetic model systems, such as Caenorhabditis elegans. As mutagenized strains contain a significant mutational load, it is often still necessary to map mutations to a chromosomal interval to elucidate which of the WGS-identified sequence variants is the phenotype-causing one. We describe here our experience in setting up and testing a simple strategy that incorporates a rapid SNP-based mapping step into the WGS procedure. In this strategy, a mutant retrieved from a genetic screen is crossed with a polymorphic C. elegans strain, individual F2 progeny from this cross is selected for the mutant phenotype, the progeny of these F2 animals are pooled and then whole-genome-sequenced. The density of polymorphic SNP markers is decreased in the region of the phenotype-causing sequence variant and therefore enables its identification in the WGS data. As a proof of principle, we use this strategy to identify the molecular lesion in a mutant strain that produces an excess of dopaminergic neurons. We find that the molecular lesion resides in the Pax-6/Eyeless ortholog vab-3. The strategy described here will further reduce the time between mutant isolation and identification of the molecular lesion
- …