5 research outputs found

    Hydroclimate Effects on Great Salt Lake Decline Since 1980

    Get PDF
    As a terminal basin lake, the Great Salt Lake (GSL) is known to act as a barometer for low frequency climate variability for the Western United States. As thus, there are naturally occurring large changes to GSL elevation levels that vary on time scales from years to decades. However, amongst these naturally occurring interannual changes there has been a significant declining trend in the elevation levels since a string of anomalous pluvial years in the early 1980s. In the summer of 2022, the Great Salt Lake reached its lowest levels in recorded history, which coincided with a two-decades long regional drought in the Western United States. Though climate forcings have been speculated to be a primary source of this decline, the exact contribution and magnitude of drought impacts on the Great Salt Lake decline have been understudied. Analysis here addresses this question by utilizing observational climate records to establish the relationship between precipitation and drought metrics on the GSL elevation levels since the 1980s, as well as utilizing gridded reanalysis datasets to provide insights into the large-scale atmospheric conditions associated with these regional climate changes. Correlation analysis between streamflow and regional drought metrics reveals that the GSL has become more responsive to drought and less correlated with streamflow. Analyzing atmospheric conditions during the period of record reveals that a strengthened high-pressure system, associated with an intensified upper-level ridging pattern since 1980, has resulted in this pattern of increased aridity. Finally, the future of drought in the GSL watershed is analyzed using a suite of CMIP5 downscaled climate model outputs under two future warming scenarios, of which results indicate that the strongest variable associated with recent GSL decline (annual number of days without precipitable moisture) will increase in the future. Given the GSL’s economic and ecological importance, in addition to growing air quality concerns of newly exposed toxic dust from the desiccated lakebed, diagnosing the contributions of regional hydroclimate forcings on the lake\u27s decline is timely. Results from this analysis provides insights into the growing role that drought plays on the GSL’s decline and the likelihood of regional drought patterns to intensify in the future

    Temperature regimes, climate extremes, and the waning of Minnesota’s winter

    No full text
    University of Minnesota M.A. thesis. September 2020. Major: Geography. Advisor: Daniel Griffin. 1 computer file (PDF); viii, 57 pages.Minnesota, a state known for its extreme winter climate, is undergoing rapid changes to what may be its most iconic season. While Minnesota’s winter warming trend is widely known, an extended analysis on the exact nature of these changes is largely unexplored in the climate literature. The research in this thesis addresses the gap in existing literature by investigating the Minnesota winter climate record from multiple statistical approaches, including linear regression, 30-year means analysis, and change point detection, on several levels of data, including statewide, climate division, and station winter minimum temperature records. The linear regression analysis reveals consistent warming since the beginning of the record, with the greatest warming occurring between 1961 to 2020, and an absence of warming from 1991 to 2020. Investigation from the 30-year means analysis finds significant warming in the 1971–2000 and 1981–2010 periods compared to all previous 30-year mean periods in the Minnesota observational winter record, and that the 1991–2020 period is the warmest of any 30-year mean analyzed. Change point detection is implemented to provide further understanding of where a shift in the mean state could have occurred. The combined results of these three statistical approaches indicate that the Minnesota winter climate underwent an abrupt adjustment to a new regime in the early to mid-1980s. This new regime, consisting of winters with unprecedented winter warmth, has been remarkably constant since. These findings parallel literature that points to the 1980s as a period of dramatic climate variability, where regime shifts are found in climate records across the globe

    Interannual variability and trends of summertime PM2.5-based air quality in the Intermountain West

    No full text
    Summertime air quality is a growing public health concern in the populated region of Northern Utah. Whereas winter air pollution is highly linked with local atmospheric temperature inversions associated with upper atmospheric high-pressure and radiational cooling in valleys, the relationship between climate factors and the frequency of poor air quality during summer is still unknown. Analyzing the last 20 years of data, we demonstrated that summertime unhealthy days (as defined by PM2.5 air quality index level) in Northern Utah highly correlate with the number of dry-hot days, wildfire size, and an upper atmospheric ridge over the Northwestern United States. The persistent atmospheric ridge enhances lightning-caused fire burned areas in northwestern states and then transports the wildfire smoke toward Northern Utah. Similarly, climate model simulations confirm observational findings, such as an increasing trend of the upper atmospheric ridge and summertime dry days in the northwestern states. Such metrics developed in this study could be used to establish longer-term monitoring and seasonal forecasting for air quality and its compounding factors, which is currently limited to forecasting products for only several days

    The Arctic

    No full text
    International audienc

    State of the climate in 2022: introduction

    No full text
    Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect
    corecore