1,872 research outputs found
Theory of quasiparticle spectra for Fe, Co, and Ni: bulk and surface
The correlated electronic structure of iron, cobalt and nickel is
investigated within the dynamical mean-field theory formalism, using the newly
developed full-potential LMTO-based LDA+DMFT code. Detailed analysis of the
calculated electron self-energy, density of states and the spectral density are
presented for these metals. It has been found that all these elements show
strong correlation effects for majority spin electrons, such as strong damping
of quasiparticles and formation of a density of states satellite at about -7 eV
below the Fermi level. The LDA+DMFT data for fcc nickel and cobalt (111)
surfaces and bcc iron (001) surface is also presented. The electron self energy
is found to depend strongly on the number of nearest neighbors, and it
practically reaches the bulk value already in the second layer from the
surface. The dependence of correlation effects on the dimensionality of the
problem is also discussed.Comment: 15 pages, 24 figure
Correlation between Compact Radio Quasars and Ultra-High Energy Cosmic Rays
Some proposals to account for the highest energy cosmic rays predict that
they should point to their sources. We study the five highest energy events
(E>10^20 eV) and find they are all aligned with compact, radio-loud quasars.
The probability that these alignments are coincidental is 0.005, given the
accuracy of the position measurements and the rarity of such sources. The
source quasars have redshifts between 0.3 and 2.2. If the correlation pointed
out here is confirmed by further data, the primary must be a new hadron or one
produced by a novel mechanism.Comment: 8 pages, 3 tables, revtex. with some versions of latex it's necessary
to break out the tables and latex them separately using article.sty rather
than revtex.st
Orbital selective Mott transition in multi-band systems: slave-spin representation and dynamical mean-field theory
We examine whether the Mott transition of a half-filled, two-orbital Hubbard
model with unequal bandwidths occurs simultaneously for both bands or whether
it is a two-stage process in which the orbital with narrower bandwith localizes
first (giving rise to an intermediate `orbital-selective' Mott phase). This
question is addressed using both dynamical mean-field theory, and a
representation of fermion operators in terms of slave quantum spins, followed
by a mean-field approximation (similar in spirit to a Gutzwiller
approximation). In the latter approach, the Mott transition is found to be
orbital-selective for all values of the Coulomb exchange (Hund) coupling J when
the bandwidth ratio is small, and only beyond a critical value of J when the
bandwidth ratio is larger. Dynamical mean-field theory partially confirms these
findings, but the intermediate phase at J=0 is found to differ from a
conventional Mott insulator, with spectral weight extending down to arbitrary
low energy. Finally, the orbital-selective Mott phase is found, at
zero-temperature, to be unstable with respect to an inter-orbital
hybridization, and replaced by a state with a large effective mass (and a low
quasiparticle coherence scale) for the narrower band.Comment: Discussion on the effect of hybridization on the OSMT has been
extende
- …