26 research outputs found

    Alliances and the innovation performance of corporate and public research spin-off firms

    Get PDF
    We explore the innovation performance benefits of alliances for spin-off firms, in particular spin-offs either from other firms or from public research organizations. During the early years of the emerging combinatorial chemistry industry, the industry on which our empirical analysis focuses, spin-offs engaged in alliances with large and established partners, partners of similar type and size, and with public research organizations, often for different reasons. We seek to understand to what extent alliances of spin-offs with other firms (either large- or small- and medium-sized firms) affected their innovation performance and also how this performance may have been affected by their corporate or public research background. We find evidence that in general alliances of spin-offs with other firms, in particular alliances with large firms, increased their innovation performance. Corporate spin-offs that formed alliances with other firms outperformed public research spin-offs with such alliances. This suggests that, in terms of their innovation performance, corporate spin-offs that engaged in alliances with other firms seemed to have benefitted from their prior corporate background. Interestingly, it turns out that the negative impact of alliances on the innovation performance of public research spin-offs was largely affected by their alliances with small- and medium-sized firms

    The DNA puff BhB10-1 gene is differentially expressed in various tissues of Bradysia hygida late larvae and constitutively transcribed in transgenic Drosophila

    No full text
    We extended the characterization of the DNA puff BhB10-1 gene of Bradysia hygida by showing that, although its mRNA is detected only at the end of the fourth larval instar, BhB10-1 expression is not restricted to the salivary gland, the tissue in which this gene is amplified. Different amounts of BhB10-1 mRNA were detected in other larval tissues such as gut, Malpighian tubules, fat body, brain and cuticle, suggesting that this gene is expressed differentially in the various tissues analyzed. Analysis of transgenic Drosophila carrying the BhB10-1 transcription unit and flanking sequences revealed that the tested fragment promotes transcription in a constitutive manner. We suggest that either cis-regulatory elements are missing in the transgene or factors that temporally regulate the BhB10-1 gene in B. hygida are not conserved in Drosophila
    corecore