17 research outputs found

    The reality of virtual limbs: does mirror technique for hand has functional consequences for the motor output?

    Get PDF
    Motor imagery was proven to excite the motor cortex as actual action execution. Therefore, motor imagery training was suggested as a method of facilitating the rehabilitation of the paretic limbs following stroke. Objective. To investigate whether motor imagery brings objectively measurable effects on the motor behaviour, and whether these effects can be enhanced by the application of the mirror technique. Three experiments were conducted involving 32 neurologically healthy participants, with strong right-handedness. Motor imagery simulation of the bimanual movement induced similar changes in terms of temporal precision as overt motor execution. The mid-sagittal mirror technique increased the subjective kinaesthetic and visual vividness of the motor imagery. The source of the observed changes in motor parameters under motor imagery conditions was identified to be different during bimanual conditions. Further investigations need to be conducted to examine the mechanisms underlying observed patterns of results

    The complexity of the relationship between neuropsychological deficits and impairment in everyday tasks after stroke

    Get PDF
    Background and purpose: A large body of research reports that stroke patients are debilitated in terms of daily independence after dismissal from the hospital unit. Patients struggle with the use of daily objects or performing complex actions. Differences between individual deficits of patients are often associated with the site of the brain damage. However, clinical studies suggest that patients exhibit varied constellations of action-associated difficulties and neuropsychological deficits. There is a lack of conclusive evidence indicating how different neuropsychological symptoms link to the impaired ability to perform activities of daily living (ADL). Materials and methods: To further address this matter, in this study we compared the behavior of patients with left brain damage (LBD) and right brain damage (RBD) following stroke in two naturalistic task scenarios (tea making and document filing),and compared the committed action errors to the neuropsychological screening results. Results: We observed mild to severe impairments in both the LBD and RBD groups amounting to 37-55% of failure rate in attainment of action goal. Interestingly, the performance on both tasks was not correlated to each other, suggesting that the tasks involved a different set of higher cognitive functions. Despite similar behavioral manifestations, in the LBD group poor task performance was related to deficits in praxis performance and unilateral tactile and visual extinction. The presence of aphasia did not correlate with task performance, except for a link between low scores in Aachen aphasia test scales and misestimation error in the tea making task. In the RBD group, difficulties with performance were primarily linked to deficit in praxis and unilateral visual extinction. Conclusions: Despite similar behavior, the underlying mechanisms of the deficits after stroke might be different (in patients with LBD and RBD) and reveal complex interlinks of cognitive networks involved in the ability to carry on everyday tasks

    Use of Biological Motion based Cues and Ecological Sounds in the Neurorehabilitation of Apraxia

    Full text link
    Technological progress in the area of informatics and human interface platforms create a window of opportunities for the neurorehablitation of patients with motor impairments. The CogWatch project (www.cogwatch.eu) aims to create an intelligent assistance system to improve motor planning and execution in patients with apraxia during their daily activities. Due to the brain damage caused by cardiovascular incident these patients suffer from impairments in the ability to use tools, and to sequence actions during daily tasks (such as making breakfast). Based on the common coding theory (Hommel et al., 2001) and mirror neuron primate research (Rizzolatti et al., 2001) we aim to explore use of cues, which incorporate aspects of biological motion from healthy adults performing everyday tasks requiring tool use and ecological sounds linked to the action goal. We hypothesize that patients with apraxia will benefit from supplementary sensory information relevant to the task, which will reinforce the selection of the appropriate motor plan. Findings from this study determine the type of sensory guidance in the CogWatch interface. Rationale for the experimental design is presented and the relevant literature is discussed

    Parkinson's - is time on your side? : temporal enhancement of motor performance using sensory guides

    No full text
    The basal ganglia system is directly involved in functions of habitual motor control, organisation and initiation of movement (Redgrave et al., 2010). As decreased dopamine levels debilitate normal motor function, people with Parkinson's disease tend to move 30-40% slower than healthy adults, with a movement range that is often compromised (Stelmach, Teasdale, Philips, & Worringham, 1989). There is lack of consistent evidence as to how well Parkinson's Disease patients are able to temporally control their movements. This thesis reports on work exploring the underpinnings of temporal control of movement in healthy brains and Parkinson's disease patients. Initial investigations suggest that basal ganglia play an important role in sensorimotor synchronisation through error correction and temporal anticipation processes. We demonstrate that progression of the disease has a debilitating impact on the ability to time the movement with regards to an external temporal framework in intercepting beat task and is independent from underscaling of the movement. We further explore ways of enhancement of temporal control in Parkinson's disease by providing an extrinsic kinematic template for the movement. We present novel evidence that enhancement of motor performance in Parkinson's disease (paradoxical kinesia) is triggered by the dynamic temporal information in the environment (moving object, visual and auditory arrays of information). We demonstrate that both healthy controls and patients can exploit the characteristics of specially engineered sensory guides (visual and acoustic) to improve the timing of their movement (finger tracking and ball catching). The findings from this report have both theoretical and practical implications. We propose that ability for sensorimotor synchronisation could be a behavioural marker of Parkinson's disease progression. Finally, we point towards the use of dynamic guides based on biological motion to aid motor planning in daily activities and facilitate exercise in Parkinson's disease.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Sound, Music and Movement in Parkinson's Disease

    No full text
    Recent years have brought new insights to the understanding of Parkinson’s disease, impact of exercise and sound displays in rehabilitation and movement facilitation. There is growing evidence that auditory signals in the environment can provide a temporal template for movement and change the mode of motor control from intrinsic to extrinsic; habitual to goal-directed, enabling enhanced motor performance in patients. In addition, forced exercise rate studies show that exercising at the pace of healthy adults can have potential neuroprotective benefits for patients. Many research groups have explored the use of auditory cues (such as rhythmical auditory training) in improving gait and upper limb movement parameters. Cues are usually either intermittent (metronome) or continuous (dynamic sound displays). Similarly, dance based interventions suggest that patients benefit from additional sensory information (i.e. the temporal structure embedded in music and proprioceptive information from a dancing partner) that facilities movement. On the contrary, studies dedicated to auditory perception and motor timing report an impaired ability of patients to perceive and synchronise with complex rhythmical structures (i.e. causing an inability to play musical instruments). With the growth of modern technology and the increasing portability of hi-specification devices (such as smart phones), new research questions on the design of interventions are beginning to emerge as we strive for more efficient therapeutic approaches. In this Research Topic we wanted to bring together top scientists from the movement disorder, motor control and sound related studies along with therapists. That way, we can engage in cross-disciplinary and challenging scientific debate about future rehabilitation avenues and frontiers for Parkinson’s disease patients

    The tool in the brain: apraxia in ADL. Behavioral and neurological correlates of apraxia in daily living

    Get PDF
    Humans differ from other animals in the way they can skilfully and precisely operate or invent tools to facilitate their everyday life. Tools have dominated our home, travel and work environment, becoming an integral step for our motor skills development. What happens when the part of the brain responsible for tool use is damaged in our adult life due to a cerebrovascular accident? How does daily life change when we lose the previously mastered ability to make use of the objects around us? How do patients suffering from compromised tool use cope with food preparation, personal hygiene, grooming, housework, or use of home appliances? In this literature review we present a state of the art for single and multiple tool use research, with a focus on the impact that apraxia (impaired ability to perform tool-based actions) and action disorganization syndrome (ADS;impaired ability to carry out multi-step actions) have on activities of daily living (ADL). Firstly, we summarize the behavioral studies investigating the impact of apraxia and other comorbidity syndromes, such as neglect or visual extinction, on ADL. We discuss the hallmarks of the compromised tool use in terms of the sequencing of action steps, conceptual errors committed, spatial motor control, and temporal organization of the movement. In addition, we present an up-to-date overview of the neuroimaging and lesion analyses studies that provide an insight into neural correlates of tool use in the human brain and functional changes in the neural organization following a stroke, in the context of ADL. Finally we discuss the current practice in neurorehabilitation of ADL in apraxia and ADS aiming at increasing patients independence

    Positive emotions foster spontaneous synchronisation in a group movement improvisation task

    No full text
    International audienceEmotions are a natural vector for acting together with others and are witnessed in human behaviour, perception and body functions. For this reason, studies of human-to-human interaction, such as multi-person motor synchronisation, are a perfect setting to disentangle the linkage of emotion with socio-motor interaction. And yet, the majority of joint action studies aiming at understanding the impact of emotions on multi-person performance resort to enacted emotions, the ones that are emulated based on the previous experience of such emotions, and almost exclusively focus on dyadic interaction. In addition, tasks chosen to study emotion in joint action are frequently characterised by a reduced number of physical dimensions to gain experimental control and subsequent facilitation in data analysis. Therefore, it is not clear how naturalistically induced emotions diffuse in more ecological interactions with other people and how emotions affect the process of interpersonal synchronisation. Here, we show that positive and negative emotions differently alter spontaneous human synchronous behaviour during a multi-person improvisation task. The study involved 39 participants organised in triads who self-reported liking improvisational activities (e.g., dancing). The task involved producing improvisational movements with the right hand. Participants were emotionally induced by manipulated social feedback involving a personal ranking score. Three-dimensional spatio-temporal data and cardiac activity were extracted and transformed into oscillatory signals (phases) to compute behavioural and physiological synchrony. Our results demonstrate that individuals induced with positive emotions, as opposed to negative emotions or a neutral state, maintained behavioural synchrony with other group members for a longer period of time. These findings contribute to the emerging shift of neuroscience of emotion and affective sciences towards the environment of social significance where emotions appear the most—in interaction with others. Our study showcases a method of quantification of synchrony in an improvisational and interactive task based on a well-established Kuramoto model

    Application of Human Error Identification (HEI) Techniques to cognitive rehabilitation in stroke patients with Limb Apraxia

    No full text
    The aim of this study was to consider the potential uses of human error identification (HEI) techniques in the development of a Personal Healthcare System (PHS) capable of delivering cognitive rehabilitation of activities of daily living (ADL) for stroke patients with limb apraxia (i.e., CogWatch). HEI techniques were able to predict a number of apraxic errors, as well as the associated consequences. The results of the present study indicate that HEI analysis is a useful tool in the design of cognitive systems that seek to reduce or eliminate errors in apraxic populations. The results will be implemented in the CogWatch system and will be used to develop error reduction strategies that prevent errors from occurring, and to provide post-error feedback to help the user correct their actions.</p
    corecore