43 research outputs found
Human herpesvirus multiplex ddPCR detection in brain tissue from low- and high-grade astrocytoma cases and controls
BACKGROUND: Glioblastoma (GBM) is a fatal CNS malignancy, representing 50 % of all gliomas with approximately 12–18 months survival time after initial diagnosis. Recently, the human herpesvirus cytomegalovirus (CMV) has been suggested to have an oncogenic role, yet this association remains controversial. In addition, human herpesvirus 6 (HHV-6) and Epstein-Barr virus (EBV) have also been associated with low-grade gliomas, but few studies have examined HHV-6 and EBV in glioblastomas. Droplet digital PCR (ddPCR) is a highly precise diagnostic tool that enables the absolute quantification of target DNA. This study examines the association between multiple human herpesviruses and astrocytomas. METHODS: This study analyzed 112 brain tissue specimens, including 45 glioblastoma, 12 astrocytoma grade III, 2 astrocytoma grade II, 4 astrocytoma grade I, and 49 controls. All brain tissue samples were de-identified and pathologically confirmed. Each tissue block was sectioned for DNA extraction and CMV, EBV, HHV-6A and HHV-6B, and a cellular housekeeping gene were amplified by ddPCR. RESULTS: Neither CMV nor HHV-6A were detected in any of the astrocytoma samples. However, HHV-6B (p = 0.147) and EBV (p = 0.049) had a higher positivity frequency in the GBM compared to the controls. CONCLUSION: The undetectable CMV DNA in the astrocytoma cohort does not support the observation of an increased prevalence of CMV DNA in GBM, as reported in other studies. EBV has a significantly higher positivity in the GBM cohort compared to the controls, while HHV-6B has a higher but not statistically significant positivity in the case cohort. Whether these viruses play an oncogenic role in GBM remains to be further investigated
Targeted expression of human folylpolyglutamate synthase for selective enhancement of methotrexate chemotherapy in osteosarcoma cells
The antifolate methotrexate (MTX) is an important chemotherapeutic agent for treatment of osteosarcoma. This drug is converted intracellularly into polyglutamate derivates by the enzyme folylpolyglutamate synthase (FPGS). MTX polyglutamates show an enhanced and prolonged cytotoxicity in comparison to the monoglutamate. In the present study, we proved the hypothesis that transfer of the human fpgs gene into osteosarcoma cells may augment their MTX sensitivity. For this purpose, we employed the human osteocalcin (OC) promoter, which had shown marked osteosarcoma specificity in promoter studies using different luciferase assays in osteosarcoma and non-osteosarcoma cell lines. A recombinant lentiviral vector was generated with the OC promoter driving the expression of fpgs and the gene for enhanced green fluorescent protein (egfp), which was linked to fpgs by an internal ribosomal entry site (IRES). As the vector backbone contained only a self-inactivating viral LTR promoter, any interference of the OC promoter by unspecific promoter elements was excluded. We tested the expression of FPGS and enhanced green fluorescent protein (EGFP) after lentiviral transduction in various osteosarcoma cell lines (human MG-63 cells and TM 791 cells; rat osteosarcoma (ROS) 17/2.8 cells) and non-osteogenic tumor cell lines (293T human embryonic kidney cells, HeLa human cervix carcinoma cells). EGFP expression and MTX sensitivity were assessed in comparison with non-transduced controls. Whereas the OC promoter failed to enhance MTX sensitivity via FPGS expression in non-osteogenic tumor cell lines, the OC promoter mediated a markedly increased MTX cytotoxicity in all osteosarcoma cell lines after lentiviral transduction. The present chemotherapy-enhancing gene therapy system may have great potential to overcome in future MTX resistance in human osteosarcomas
Fatal lymphoproliferative disease in two siblings lacking functional FAAP24.
Hereditary defects in several genes have been shown to disturb the normal immune response to EBV and to give rise to severe EBV-induced lymphoproliferation in the recent years. Nevertheless, in many patients, the molecular basis of fatal EBV infection still remains unclear. The Fanconi anemia-associated protein 24 (FAAP24) plays a dual role in DNA repair. By association with FANCM as component of the FA core complex, it recruits the FA core complex to damaged DNA. Additionally, FAAP24 has been shown to evoke ATR-mediated checkpoint responses independently of the FA core complex. By whole exome sequencing, we identified a homozygous missense mutation in the FAAP24 gene (cC635T, pT212M) in two siblings of a consanguineous Turkish family who died from an EBV-associated lymphoproliferative disease after infection with a variant EBV strain, expressing a previously unknown EBNA2 allele.In order to analyze the functionality of the variant FAAP24 allele, we used herpes virus saimiri-transformed patient T cells to test endogenous cellular FAAP24 functions that are known to be important in DNA damage control. We saw an impaired FANCD2 monoubiquitination as well as delayed checkpoint responses, especially affecting CHK1 phosphorylation in patient samples in comparison to healthy controls. The phenotype of this FAAP24 mutation might have been further accelerated by an EBV strain that harbors an EBNA2 allele with enhanced activities compared to the prototype laboratory strain B95.8. This is the first report of an FAAP24 loss of function mutation found in human patients with EBV-associated lymphoproliferation