303 research outputs found

    Case report: Successful treatment with daratumumab for pure red cell aplasia in a patient with mixed lymphoid chimerism after ABO-mismatched stem cell transplant for sickle cell disease

    Get PDF
    Pure red cell aplasia (PRCA) is a serious complication after ABO-mismatched allogeneic hematopoietic stem cell transplantation (HSCT). Following HSCT, persistent anti-donor isohemagglutinins against donor ABO antigens are considered the immunological cause of PRCA. Patients with post-transplant PRCA are at risk for graft rejection and prolonged red blood cell transfusion dependency. No standard treatment exists. Recently however, the anti-CD38 monoclonal antibody daratumumab has been reported to be an effective treatment for post-transplant PRCA in patients with complete donor chimerism. Here, we describe the first case of PRCA in a patient with mixed lymphoid patient/donor chimerism that was successfully treated with daratumumab. This is also the first report of a transplant recipient with sickle cell disease who was treated with this relatively new approach. Fourteen months post-transplantation and twelve months after treatment with daratumumab, our patient has a normal complete blood count and the anti-donor isohemagglutinins remain undetectable despite mixed lymphoid chimerism. Mixed chimerism is a common manifestation in adult patients with sickle cell disease transplanted with non-myeloablative conditioning and a matched sibling donor. The application of non-myeloablative HSCT for patients with sickle cell disease is steadily increasing. Therefore, the incidence of PRCA in this setting might also increase. As the risk of graft rejection due to PRCA can be especially high in patients with mixed chimerism, clinicians should be aware that daratumumab can be an effective treatment in the setting of mixed chimerism

    Health Outcomes and Cost-effectiveness of Monoclonal SARS-CoV-2 Antibodies as Pre-exposure Prophylaxis

    Get PDF
    Importance: Pre-exposure prophylaxis with neutralizing SARS-CoV-2 monoclonal antibodies (mAbs PrEP) prevents infection and reduces hospitalizations and the duration thereof for COVID-19 and death among high-risk individuals. However, reduced effectiveness due to a changing SARS-CoV-2 viral landscape and high drug prices remain substantial implementation barriers. Objective: To assess the cost-effectiveness of mAbs PrEP as COVID-19 PrEP. Design, Setting, and Participants: For this economic evaluation, a decision analytic model was developed and parameterized with health care outcome and utilization data from individuals with high risk for COVID-19. The SARS-CoV-2 infection probability, mAbs PrEP effectiveness, and drug pricing were varied. All costs were collected from a third-party payer perspective. Data were analyzed from September 2021 to December 2022. Main Outcomes and Measures: Health care outcomes including new SARS-CoV-2 infections, hospitalization, and deaths. The cost per death averted and cost-effectiveness ratios using a threshold for prevention interventions of 22000orlessperqualityadjustedlifeyear(QALY)gained.Results:Theclinicalcohortconsistedof636individualswithCOVID19(mean[SD]age63[18]years;341[5422000 or less per quality-adjusted life year (QALY) gained. Results: The clinical cohort consisted of 636 individuals with COVID-19 (mean [SD] age 63 [18] years; 341 [54%] male). Most individuals were at high risk for severe COVID-19, including 137 (21%) with a body mass index of 30 or higher, 60 (9.4%) with hematological malignant neoplasm, 108 (17%) post-transplantation, and 152 (23.9%) who used immunosuppressive medication before COVID-19. Within the context of a high (18%) SARS-CoV-2 infection probability and low (25%) effectiveness the model calculated a short-term reduction of 42% ward admissions, 31% intensive care unit (ICU) admissions, and 34% deaths. Cost-saving scenarios were obtained with drug prices of 275 and 75% or higher effectiveness. With a 100% effectiveness mAbs PrEP can reduce ward admissions by 70%, ICU admissions by 97%, and deaths by 92%. Drug prices, however, need to reduce to 550forcosteffectivenessratioslessthan550 for cost-effectiveness ratios less than 22000 per QALY gained per death averted and to 2200forratiosbetween2200 for ratios between 22000 and 88000.ConclusionsandRelevance:Inthisstudy,useofmAbsPrEPforpreventingSARSCoV2infectionswascostsavingatthebeginningofanepidemicwave(highinfectionprobability)with7588000. Conclusions and Relevance: In this study, use of mAbs PrEP for preventing SARS-CoV-2 infections was cost-saving at the beginning of an epidemic wave (high infection probability) with 75% or higher effectiveness and drug price of 275. These results are timely and relevant for decision-makers involved in mAbs PrEP implementation. When newer mAbs PrEP combinations become available, guidance on implementation should be formulated ensuring a fast rollout. Nevertheless, advocacy for mAbs PrEP use and critical discussion on drug prices are necessary to ensuring cost-effectiveness for different epidemic settings.</p

    The role of tunneling in enzyme catalysis of C–H activation

    Get PDF
    AbstractRecent data from studies of enzyme catalyzed hydrogen transfer reactions implicate a new theoretical context in which to understand C–H activation. This is much closer to the Marcus theory of electron transfer, in that environmental factors influence the probability of effective wave function overlap from donor to acceptor atoms. The larger size of hydrogen and the availability of three isotopes (H, D and T) introduce a dimension to the kinetic analysis that is not available for electron transfer. This concerns the role of gating between donor and acceptor atoms, in particular whether the system in question is able to tune distance between reactants to achieve maximal tunneling efficiency. Analysis of enzyme systems is providing increasing evidence of a role for active site residues in optimizing the inter-nuclear distance for nuclear tunneling. The ease with which this optimization can be perturbed, through site-specific mutagenesis or an alteration in reaction conditions, is also readily apparent from an analysis of the changes in the temperature dependence of hydrogen isotope effects

    Benefits and risks of clofarabine in adult acute lymphoblastic leukemia investigated in depth by multi-state modeling

    Get PDF
    Background: We recently reported results of the prospective, open-label HOVON-100 trial in 334 adult patients with acute lymphoblastic leukemia (ALL) randomized to first-line treatment with or without clofarabine (CLO). No improvement of event-free survival (EFS) was observed, while a higher proportion of patients receiving CLO obtained minimal residual disease (MRD) negativity. Aim: In order to investigate the effects of CLO in more depth, two multi-state models were developed to identify why CLO did not show a long-term survival benefit despite more MRD-negativity. Methods: The first model evaluated the effect of CLO on going off-protocol (not due to refractory disease/relapse, completion or death) as a proxy of severe treatment-related toxicity, while the second model evaluated the effect of CLO on obtaining MRD negativity. The subsequent impact of these intermediate events on death or relapsed/refractory disease was assessed in both models. Results: Overall, patients receiving CLO went off-protocol more frequently than control patients (35/168 [21%] vs. 18/166 [11%], p = 0.019; HR 2.00 [1.13–3.52], p = 0.02), especially during maintenance (13/44 [30%] vs. 6/56 [11%]; HR 2.85 [95%CI 1.08–7.50], p = 0.035). Going off-protocol was, however, not associated with more relapse or death. Patients in the CLO arm showed a trend towards an increased rate of MRD-negativity compared with control patients (HR MRD-negativity: 1.35 [0.95–1.91], p = 0.10), which did not translate into a significant survival benefit. Conclusion: We conclude that the intermediate states, i.e., going off-protocol and MRD-negativity, were affected by adding CLO, but these transitions were not associated with subsequent survival estimates, suggesting relatively modest antileukemic activity in ALL.</p

    N-acetylcysteine reduces oxidative stress in sickle cell patients

    Get PDF
    Oxidative stress is of importance in the pathophysiology of sickle cell disease (SCD). In this open label randomized pilot study the effects of oral N-acetylcysteine (NAC) on phosphatidylserine (PS) expression as marker of cellular oxidative damage (primary end point), and markers of hemolysis, coagulation and endothelial activation and NAC tolerability (secondary end points) were studied. Eleven consecutive patients (ten homozygous [HbSS] sickle cell patients, one HbSβ0-thalassemia patient) were randomly assigned to treatment with either 1,200 or 2,400 mg NAC daily during 6 weeks. The data indicate an increment in whole blood glutathione levels and a decrease in erythrocyte outer membrane phosphatidylserine exposure, plasma levels of advanced glycation end-products (AGEs) and cell-free hemoglobin after 6 weeks of NAC treatment in both dose groups. One patient did not tolerate the 2,400 mg dose and continued with the 1,200 mg dose. During the study period, none of the patients experienced painful crises or other significant SCD or NAC related complications. These data indicate that N-acetylcysteine treatment of sickle cell patients may reduce SCD related oxidative stress

    Determinants of lenalidomide response with or without erythropoiesis-stimulating agents in myelodysplastic syndromes:the HOVON89 trial

    Get PDF
    A randomized phase-II study was performed in low/int-1 risk MDS (IPSS) to study efficacy and safety of lenalidomide without (arm A) or with (arm B) ESA/G-CSF. In arm B, patients without erythroid response (HI-E) after 4 cycles received ESA; G-CSF was added if no HI-E was obtained by cycle 9. HI-E served as primary endpoint. Flow cytometry and next-generation sequencing were performed to identify predictors of response. The final evaluation comprised 184 patients; 84% non-del(5q), 16% isolated del(5q); median follow-up: 70.7 months. In arm A and B, 39 and 41% of patients achieved HI-E; median time-to-HI-E: 3.2 months for both arms, median duration of-HI-E: 9.8 months. HI-E was significantly lower in non-del(5q) vs. del(5q): 32% vs. 80%. The same accounted for transfusion independency-at-week 24 (16% vs. 67%), but similar in both arms. Apart from presence of del(5q), high percentages of bone marrow lymphocytes and progenitor B-cells, a low number of mutations, absence of ring sideroblasts, and SF3B1 mutations predicted HI-E. In conclusion, lenalidomide induced HI-E in patients with non-del(5q) and del(5q) MDS without additional effect of ESA/G-CSF. The identified predictors of response may guide application of lenalidomide in lower-risk MDS in the era of precision medicine. (EudraCT 2008-002195-10).</p

    Pontocerebellar hypoplasia type 2: a neuropathological update

    Get PDF
    Pontocerebellar hypoplasia type 2 (PCH-2; MIM 277470), an autosomal recessive neurodegeneration with fetal onset, was studied in six autopsies with ages at death ranging between 1 and 22 years. Three patients were distantly related. A case of olivopontocerebellar hypoplasia (OPCH; MIM 225753) was studied for comparison. Typical findings are: short cerebellar folia with poor branching (“hypoplasia”), relative sparing of the vermis, sharply demarcated areas of full thickness loss of cerebellar cortex probably resulting from regression at an early stage of development, segmental loss of dentate nuclei with preserved islands and reactive changes, segmental loss in the inferior olivary nucleus with reactive changes, loss of ventral pontine nuclei with near absence of transverse pontine fibers and sparing of spinal anterior horn cells. Variable findings are: cystic cerebellar degeneration, found in two, with vascular changes limited to the cerebellum in one. Comparison to olivopontocerebellar hypoplasia (OPCH) strongly suggests a continuum of pathology between this disorder and PCH-2. Immunohistochemical evaluation of the endoplasmic reticulum stress response is negative. We conclude that the neuropathological findings in PCH-2 are sufficiently specific to enable an unequivocal diagnosis based on neuropathology

    One-year safety and efficacy of mitapivat in sickle cell disease: follow-up results of a phase 2, open-label study

    Get PDF
    Targeting the primary pathogenic event of sickle cell disease (SCD), the polymerization of sickle hemoglobin (HbS), may prevent downstream clinical events. Mitapivat, an oral pyruvate kinase (PK) activator, has therapeutic potential by increasing adenosine triphosphate (ATP) and decreasing 2,3-diphosphoglycerate (2,3-DPG), a glycolytic red blood cell (RBC) intermediate. In the previously reported 8-week dose-finding period of this phase 2, investigator-initiated, open-label study, mitapivat was well tolerated and showed efficacy in SCD. Here, the 1-year fixed-dose extension period is reported in which 9 of 10 included patients (90%) aged ≥16 years with SCD (HbSS, HbS/β0, or HbS/β+) continued with mitapivat. Mostly mild treatment-emergent adverse events (AEs) (most commonly, transaminase increase and headache) were still reported. Apart from the reported nontreatment-related serious AE (SAE) of a urinary tract infection in the dose-finding period, 1 nontreatment-related SAE occurred in the fixed-dose extension period in a patient who died of massive pulmonary embolism due to COVID-19. Importantly, sustained improvement in Hb level (mean increase, 1.1 ± 0.7 g/dL; P = .0014) was seen, which was accompanied by decreases in markers of hemolysis. In addition, the annualized rate of vaso-occlusive events reduced significantly from a historic baseline of 1.33 ± 1.32 to 0.64 ± 0.87 (P = .0489) when combining the dose-finding period and fixed-dose extension period. Cellularly, the ATP:2,3-DPG ratio and Hb-oxygen affinity significantly increased and RBC sickling (point of sickling) nonsignificantly reduced. Overall, this study demonstrated 1-year safety and efficacy of treatment with mitapivat in SCD, supporting further evaluation in ongoing phase 2/3 study (RISE UP, NCT05031780). This trial was registered at https://www.clinicaltrialsregister.eu/ as NL8517 and EudraCT 2019-003438-18

    Risk Stratification in Older Intensively Treated Patients With AML

    Get PDF
    \ua9 2024 by American Society of Clinical Oncology.PURPOSE AML is a genetically heterogeneous disease, particularly in older patients. In patients older than 60 years, survival rates are variable after the most important curative approach, intensive chemotherapy followed by allogeneic hematopoietic cell transplantation (allo-HCT). Thus, there is an urgent need in clinical practice for a prognostic model to identify older patients with AML who benefit from curative treatment. METHODS We studied 1,910 intensively treated patients older than 60 years with AML and high-risk myelodysplastic syndrome (HR-MDS) from two cohorts (NCRIAML18 and HOVON-SAKK). The median patient age was 67 years. Using a random survival forest, clinical, molecular, and cytogenetic variables were evaluated in an AML development cohort (n = 1,204) for association with overall survival (OS). Relative weights of selected variables determined the prognostic model, which was validated in AML (n = 491) and HR-MDS cohorts (n = 215). RESULTS The complete cohort had a high frequency of poor-risk features, including 2022 European LeukemiaNet adverse-risk (57.3%), mutated TP53 (14.4%), and myelodysplasia-related genetic features (65.1%). Nine variables were used to construct four groups with highly distinct 4-year OS in the (1) AML development, (2) AML validation, and (3) HR-MDS test cohorts ([1] favorable: 54% \ub1 4%, intermediate: 38% \ub1 2%, poor: 21% \ub1 2%, very poor: 4% \ub1 1%; [2] 54% \ub1 9%, 43% \ub1 4%, 27% \ub1 4%, 4% \ub1 3%; and [3] 54% \ub1 10%, 33% \ub1 6%, 14% \ub1 5%, 0% \ub1 3%, respectively). This new AML60+ classification improves current prognostic classifications. Importantly, patients within the AML60+ intermediate- and very poor-risk group significantly benefited from allo-HCT, whereas the poor-risk patients showed an indication, albeit nonsignificant, for improved outcome after allo-HCT. CONCLUSION The new AML60+ classification provides prognostic information for intensively treated patients 60 years and older with AML and HR-MDS and identifies patients who benefit from intensive chemotherapy and allo-HCT

    Metabolic blood profile and response to treatment with the pyruvate kinase activator mitapivat in patients with sickle cell disease

    Get PDF
    Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p  < 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p  < 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment
    corecore