26 research outputs found

    Professional Social Responsibility in Engineering

    Get PDF
    This chapter presents a range of viewpoints on the social responsibilities of the engineering profession. These social responsibilities of the engineering profession are in many ways synonymous with macroethics. Analysis of the engineering codes of ethics and educational requirements are used to support these arguments, and are compared with the perceptions of engineering students and working engineers. The social responsibilities of engineers include human safety and environmental protection in engineering designs. But it may extend further to include pro bono work and considerations of social justice issues. Research has found that perceptions of the professional social responsibilities of engineers vary across different countries/cultures, engineering disciplines (e.g., mechanical versus environmental engineers) and by gender. The impact of engineering education and broader college experiences on evolving notions of professional social responsibility will be described, in particular community engagement. Concerns about decreasing commitment to socially responsible engineering among college students, a so-called “culture of disengagement” will be presented, as well of the interaction of students’ social goals for engineering and leaving engineering studies

    Service-Learning and Civic Engagement as the Basis for Engineering Design Education

    Get PDF
    Service-learning (SL) is among the pedagogies that can be used to teach students the engineering design process. The similarities and differences of SL as implemented via engineering design are compared to community and civic engagement typical in disciplines such as social sciences. Although engineering design can be conceptualized via a number of paradigms, a human-centered design approach is particularly well-suited to SL projects. SL projects typically engage engineering students and instructors with stakeholders who do not have technical backgrounds. This approach is different than many industrially-sponsored projects that are more typical in capstone design projects and poses unique challenges and opportunities for engineering design education. Best practice recommendations for SL design projects have been distilled, with a particular emphasis on developing reciprocal partnerships and meaningful student reflection. SL design projects can lead to a rich array of knowledge, skills, and attitude outcomes among students, including ethical development, humility and empathy, and creativity and innovation. Enhanced recruiting and retention using this pedagogy has also been reported. Assessment of community partner satisfaction, learning, and outcomes are generally less well documented. SL design projects can be integrated into courses ranging from first-year to senior capstone, providing benefits to communities while enhancing students’ skills

    Service Learning in Engineering

    Get PDF
    corecore