589 research outputs found

    Spectrum and transition rates of the XX chain analyzed via Bethe ansatz

    Get PDF
    As part of a study that investigates the dynamics of the s=1/2 XXZ model in the planar regime |Delta|<1, we discuss the singular nature of the Bethe ansatz equations for the case Delta=0 (XX model). We identify the general structure of the Bethe ansatz solutions for the entire XX spectrum, which include states with real and complex magnon momenta. We discuss the relation between the spinon or magnon quasiparticles (Bethe ansatz) and the lattice fermions (Jordan-Wigner representation). We present determinantal expressions for transition rates of spin fluctuation operators between Bethe wave functions and reduce them to product expressions. We apply the new formulas to two-spinon transition rates for chains with up to N=4096 sites.Comment: 11 pages, 4 figure

    Quasiparticles governing the zero-temperature dynamics of the 1D spin-1/2 Heisenberg antiferromagnet in a magnetic field

    Get PDF
    The T=0 dynamical properties of the one-dimensional (1D) s=1/2s=1/2 Heisenberg antiferromagnet in a uniform magnetic field are studied via Bethe ansatz for cyclic chains of NN sites. The ground state at magnetization 0<Mz<N/20<M_z<N/2, which can be interpreted as a state with 2Mz2M_z spinons or as a state of MzM_z magnons, is reconfigured here as the vacuum for a different species of quasiparticles, the {\em psinons} and {\em antipsinons}. We investigate three kinds of quantum fluctuations, namely the spin fluctuations parallel and perpendicular to the direction of the applied magnetic field and the dimer fluctuations. The dynamically dominant excitation spectra are found to be sets of collective excitations composed of two quasiparticles excited from the psinon vacuum in different configurations. The Bethe ansatz provides a framework for (i) the characterization of the new quasiparticles in relation to the more familiar spinons and magnons, (ii) the calculation of spectral boundaries and densities of states for each continuum, (iii) the calculation of transition rates between the ground state and the dynamically dominant collective excitations, (iv) the prediction of lineshapes for dynamic structure factors relevant for experiments performed on a variety of quasi-1D antiferromagnetic compounds, including KCuF3_3, Cu(C4_4H4_4N2)(NO3)2_2)(NO_3)_2, and CuGeO3_3.Comment: 13 pages, 12 figure

    Valence bond solid formalism for d-level one-way quantum computation

    Full text link
    The d-level or qudit one-way quantum computer (d1WQC) is described using the valence bond solid formalism and the generalised Pauli group. This formalism provides a transparent means of deriving measurement patterns for the implementation of quantum gates in the computational model. We introduce a new universal set of qudit gates and use it to give a constructive proof of the universality of d1WQC. We characterise the set of gates that can be performed in one parallel time step in this model.Comment: 26 pages, 9 figures. Published in Journal of Physics A: Mathematical and Genera

    Dynamical correlation functions of the XXZ model at finite temperature

    Full text link
    Combining a lattice path integral formulation for thermodynamics with the solution of the quantum inverse scattering problem for local spin operators, we derive a multiple integral representation for the time-dependent longitudinal correlation function of the spin-1/2 Heisenberg XXZ chain at finite temperature and in an external magnetic field. Our formula reproduces the previous results in the following three limits: the static, the zero-temperature and the XY limits.Comment: 22 pages, v4: typos corrected, published versio

    Comparative genomic hybridization detects many recurrent imbalances in central nervous system primitive neuroectodermal tumours in children

    Get PDF
    A series of 23 children with primitive neuroectodermal tumours (PNET) were analysed with comparative genomic hybridization (CGH). Multiple chromosomal imbalances have been detected in 20 patients. The most frequently involved chromosome was chromosome 17, with a gain of 17q (11 cases) and loss of 17p (eight cases). Further recurrent copy number changes were detected. Extra copies of chromosome 7 were present in nine patients and gains of 1q were detected in six patients. A moderate genomic amplification was detected in one patient, involving two sites on 3p and the whole 12p. Losses were more frequent, and especially involved the chromosomes 11 (nine cases), 10q (eight cases), 8 (six cases), X (six patients) and 3 (five cases), and part of chromosome 9 (five cases). These recurrent chromosomal changes may highlight locations of novel genes with an important role in the development and/or progression of PNET. © 1999 Cancer Research Campaig

    Computation of dynamical correlation functions of Heisenberg chains: the gapless anisotropic regime

    Full text link
    We compute all dynamical spin-spin correlation functions for the spin-1/2 XXZXXZ anisotropic Heisenberg model in the gapless antiferromagnetic regime, using numerical sums of exact determinant representations for form factors of spin operators on the lattice. Contributions from intermediate states containing many particles and string (bound) states are included. We present modified determinant representations for the form factors valid in the general case with string solutions to the Bethe equations. Our results are such that the available sum rules are saturated to high precision. We Fourier transform our results back to real space, allowing us in particular to make a comparison with known exact formulas for equal-time correlation functions for small separations in zero field, and with predictions for the zero-field asymptotics from conformal field theory.Comment: 14 page

    Spinons and triplons in spatially anisotropic frustrated antiferromagnets

    Full text link
    The search for elementary excitations with fractional quantum numbers is a central challenge in modern condensed matter physics. We explore the possibility in a realistic model for several materials, the spin-1/2 spatially anisotropic frustrated Heisenberg antiferromagnet in two dimensions. By restricting the Hilbert space to that expressed by exact eigenstates of the Heisenberg chain, we derive an effective Schr\"odinger equation valid in the weak interchain-coupling regime. The dynamical spin correlations from this approach agree quantitatively with inelastic neutron measurements on the triangular antiferromagnet Cs_2CuCl_4. The spectral features in such antiferromagnets can be attributed to two types of excitations: descendents of one-dimensional spinons of individual chains, and coherently propagating "triplon" bound states of spinon pairs. We argue that triplons are generic features of spatially anisotropic frustrated antiferromagnets, and arise because the bound spinon pair lowers its kinetic energy by propagating between chains.Comment: 16 pages, 6 figure
    • …
    corecore