59 research outputs found

    A System Dynamics based Perspective to Help to Understand the Managerial Big Picture in Respect of Urban Event Dynamics

    Get PDF
    AbstractIn the PED-community, a lot of conducted work focuses on a detailed aspect of the big picture in respect of pedestrian dynamics and disaster avoidance. Surprisingly, the field of research does not offer a lot of models including a managerial macro perspective to explain – for example – why there are mass gatherings that result in high density pedestrian conditions. To improve the mental models of researchers, managers and policy makers, this paper tries to tackle this research gap, by using the methodology of System Dynamics to explain with causal loop diagrams occurring dynamics of urban events to avoid critical situations beforehand

    Macrostates vs. Microstates in the Classical Simulation of Critical Phenomena in Quench Dynamics of 1D Ising Models

    Full text link
    We study the tractability of classically simulating critical phenomena in the quench dynamics of one-dimensional transverse field Ising models (TFIMs) using highly truncated matrix product states (MPS). We focus on two paradigmatic examples: a dynamical quantum phase transition (DQPT) that occurs in nonintegrable long-range TFIMs, and the infinite-time correlation length of the integrable nearest-neighbor TFIM when quenched to the critical point. For the DQPT, we show that the order parameters can be efficiently simulated with surprisingly heavy truncation of the MPS bond dimension. This can be used to reliably extract critical properties of the phase transition, including critical exponents, even when the full many-body state is not simulated with high fidelity. The long-time correlation length near the critical point is more sensitive to the full many-body state fidelity, and generally requires a large bond dimension MPS. Nonetheless, we find that this can still be efficiently simulated with strongly truncated MPS because it can be extracted from the short-time behavior of the dynamics where entanglement is low. Our results demonstrate that while accurate calculation of the full many-body state (microstate) is typically intractable due to the volume-law growth of entanglement, a precise specification of an exact microstate may not be required when simulating phases of matter of many-body systems (macrostates). We also study the tractability of simulation using truncated MPS based on quantum chaos and equilibration in the models. We find a counterintuitive inverse relationship, whereby local expectation values are most easily approximated for chaotic systems whose exact many-body state is most intractable.Comment: 6 sections, 4 appendices, 19 figure

    Oppilatio+ - A data and cognitive science based approach to analyze pedestrian flows in networks

    Get PDF
    Public transport services are a widespread and environmentally friendly option for mobility. In the majority of cases, passengers of public transport services will have to walk from a subway, train, or bus station to their desired travel destination. In an urban environment with a network of narrow streets, this can lead to crowd congestions during rush hour, due to the fact that passengers tend to arrive in waves. In order to monitor and analyze such crowding behavior, city planners, crowd managers, and organizers of public events must ascertain which routes these pedestrians will take from the respective station to their destination. The Oppilatio+ approach is suitable for solving this problem. It is an easy-to-apply approach to predict way-finding behavior with a minimal set of information. The necessary data includes the schedule of incoming transport vehicles at the stations and the time-stamped count of pedestrians at the respective destinations. Under these conditions, the Oppilatio+ approach is suitable for estimating the distribution of pedestrians on all possible walkways between stations and destinations. This information helps crowd control experts to recognize weak spots in the infrastructure and help event organizers to ensure an undisturbed arrival at their event. We validated our approach using two field experiments. The first one was a field study on a public event, and the second one was a case study for a large Swiss train station

    A Compact Cold-Atom Interferometer with a High Data-Rate Grating Magneto-Optical Trap and a Photonic-Integrated-Circuit-Compatible Laser System

    Full text link
    The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 uK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0 - 4.5 ms interrogation time, resulting in Δ\Delta g / g = 2.0e-6. This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics.Comment: 21 pages, 10 figure

    EMC3-EIRENE simulation of first wall recycling fluxes in W7-X with relation to H-alpha measurements

    Get PDF
    In the Wendelstein 7-X stellarator, the main locations of particle sources are expected to be the carbon divertors, baffles and graphite heat shield first wall. In this paper, the heat shield is implemented in EMC3-EIRENE to understand the expected areas and magnitudes of the recycling flux to this component. It is found that in the simulation the heat shield is not a significant source of recycling neutrals. The areas of simulated recycling flux are shown to correlate well with footprints of plasma-wetting seen in post-experimental campaign in-vessel inspection photos. EMC3-EIRENE reconstruction of line-integrated H-alpha measurements at the heat shield indicate that the majority of emission does not come from local recycling neutrals. Rather, the H-alpha signals at the heat shield are dominated by ionization of neutrals which have leaked from the divertor/baffle region into the midplane. The magnitude of the H-alpha line emission from the synthetic reconstruction is consistent with the experiment, indicating that a large overestimation of heat shield recycling would occur if these measurements were assumed to be from local recycling sources. In the future, it may be possible to obtain some information of local recycling from the heat shield since it was found that the majority of the recycling flux occurs on two well-localized areas

    IL-4 receptor-alpha-dependent control of Cryptococcus neoformans in the early phase of pulmonary infection

    Get PDF
    Cryptococcus neoformans is an opportunistic fungal pathogen that causes lung inflammation and meningoencephalitis in immunocompromised people. Previously we showed that mice succumb to intranasal infection by induction of pulmonary interleukin (IL)-4Rα-dependent type 2 immune responses, whereas IL-12-dependent type 1 responses confer resistance. In the experiments presented here, IL-4Rα −/− mice unexpectedly show decreased fungal control early upon infection with C. neoformans , whereas wild-type mice are able to control fungal growth accompanied by enhanced macrophage and dendritic cell recruitment to the site of infection. Lower pulmonary recruitment of macrophages and dendritic cells in IL-4Rα −/− mice is associated with reduced pulmonary expression of CCL2 and CCL20 chemokines. Moreover, IFN-γ and nitric oxide production are diminished in IL-4Rα −/− mice compared to wild-type mice. To directly study the potential mechanism(s) responsible for reduced production of IFN-γ, conventional dendritic cells were stimulated with C. neoformans in the presence of IL-4 which results in increased IL-12 production and reduced IL-10 production. Together, a beneficial role of early IL-4Rα signaling is demonstrated in pulmonary cryptococcosis, which contrasts with the well-known IL-4Rα-mediated detrimental effects in the late phase
    • …
    corecore