100 research outputs found
Low-cost Sensor System for Non-invasive Monitoring of Cell Growth in Disposable Bioreactors
AbstractTo ensure productivity and product quality, the parameters of biotechnological processes need to be monitored. Along temperature or pH, one important parameter is the cell density in the culture medium. In this work, we present a low-cost sensor system for online cell growth monitoring in bioreactors via permittivity measurements based on coplanar transmission lines. To evaluate the sensor, E. coli cultivations are performed. We found a good correlation between optical density of the culture medium and the effective permittivity at a frequency of 1kHz when the sensor is submerged into the culture medium. Measurements at higher frequencies additionally allow monitoring the osmolarity. Furthermore, an improved sensor was successfully used for first non-invasive measurements through the polymer wall of a disposable bioreactor
Microfluidic Device Generating Stable Concentration Gradients for Long-Term Cell Culture: Application to Wnt3a Regulation of B-catenin signaling
In developing tissues, proteins and signaling molecules present themselves in the form of concentration gradients, which determine the fate specification and behavior of the sensing cells. To mimic these conditions in vitro, we developed a microfluidic device designed to generate stable concentration gradients at low hydrodynamic shear and allowing long term culture of adhering cells. The gradient forms in a culture space between two parallel laminar flow streams of culture medium at two different concentrations of a given morphogen. The exact algorithm for defining the concentration gradients was established with the aid of mathematical modeling of flow and mass transport. Wnt3a regulation of B-catenin signaling was chosen as a case study. The highly conserved Wnt-activated B-catenin pathway plays major roles in embryonic development, stem cell proliferation and differentiation. Wnt3a stimulates the activity of B-catenin pathway, leading to translocation of B-catenin to the nucleus where it activates a series of target genes. We cultured A375 cells stably expressing a Wnt/B-catenin reporter driving the expression of Venus, pBARVS, inside the microfluidic device. The extent to which the B-catenin pathway was activated in response to a gradient of Wnt3a was assessed in real time using the BARVS reporter gene. On a single cell level, the B-catenin signaling was proportionate to the concentration gradient of Wnt3a; we thus propose that the modulation of Wnt3a gradients in real time can provide new insights into the dynamics of B-catenin pathway, under conditions that replicate some aspects of the actual cell-tissue milieu. Our device thus offers a highly controllable platform for exploring the effects of concentration gradients on cultured cells
Non-Invasive Online Monitoring of Cell Growth in Disposable Bioreactors with a Planar Coil
To ensure high quality output of biotechnological processes, relevant process parameters need to be monitored. As bioprocesses are increasingly executed in single use bioreactors, there is an increasing demand for new sensors applicable to these processes. In this work, we present a low-cost sensor system for continuous non-invasive cell growth monitoring, especially for single use bioreactor applications. The system consists of a planar coil connected to a low cost network analyzer. The coil is attached to the outside of the polymer foil of the single use bioreactor and an impedance spectrum is measured. To evaluate the sensor, E. coli cultivations are performed in a modified cultivation setup, which enables measurements through the polymer foil of a Sartorius BIOSTAT® CultiBag RM, and additionally allows sampling of culture medium for optical density reference measurements. The resonance peak of the coil in the impedance spectrum, is observed as measure for the optical density. Regardless of the simple sensor construction, we found a good correlation between optical density and the damping ratio of the resonance peak
Assessment of Hypoxia Inducible Factor Levels in Cancer Cell Lines upon Hypoxic Induction Using a Novel Reporter Construct
Hypoxia Inducible Factor (HIF) signaling pathway is important for tumor cells with limited oxygen supplies, as it is shown to be involved in the process of proliferation and angiogenesis. Given its pivotal role in cancer biology, robust assays for tracking changes in HIF expression are necessary for understanding its regulation in cancer as well as developing therapies that target HIF signaling. Here we report a novel HIF reporter construct containing tandem repeats of minimum HIF binding sites upstream of eYFP coding sequence. We show that the reporter construct has an excellent signal to background ratio and the reporter activity is HIF dependent and directly correlates with HIF protein levels. By utilizing this new construct, we assayed HIF activity levels in different cancer cell lines cultured in various degrees of hypoxia. This analysis reveals a surprising cancer cell line specific variation of HIF activity in the same level of hypoxia. We further show that in two cervical cancer cell lines, ME180 and HeLa, the different HIF activity levels observed correlate with the levels of hsp90, a cofactor that protects HIF against VHL-independent degradation. This novel HIF reporter construct serves as a tool to rapidly define HIF activity levels and therefore the therapeutic capacity of potential HIF repressors in individual cancers
Methacholine-induced airway hyperresponsiveness is dependent on Gα\u3csub\u3eq\u3c/sub\u3e signaling
Airway function in health and disease as well as in response to bronchospastic stimuli (i.e., irritants, allergens, and inflammatory mediators) is controlled, in part, by cholinergic muscarinic receptor regulation of smooth muscle. In particular, the dependence of airway smooth muscle contraction/relaxation on heterotrimeric G protein-coupled receptor signaling suggests that these events underlie the responses regulating airway function. Gαq-containing G proteins are proposed to be a prominent signaling pathway, and the availability of knockout mice deficient of this subunit has allowed for an investigation of its potential role in airway function. Airway responses in Gαq-deficient mice (activities assessed by both tracheal tension and in vivo lung function measurements) were attenuated relative to wild-type controls. Moreover, ovalbumin sensitization/aerosol challenge of Gαq-deficient mice also failed to elicit an allergen-induced increase in airway reactivity to methacholine. These findings indicate that cholinergic receptor-mediated responses are dependent on Gαq-mediated signaling events and identify Gαq as a potential target of preventative/intervening therapies for lung dysfunction
Bili Inhibits Wnt/β-Catenin Signaling by Regulating the Recruitment of Axin to LRP6
BACKGROUND: Insights into how the Frizzled/LRP6 receptor complex receives, transduces and terminates Wnt signals will enhance our understanding of the control of the Wnt/ss-catenin pathway. METHODOLOGY/PRINCIPAL FINDINGS: In pursuit of such insights, we performed a genome-wide RNAi screen in Drosophila cells expressing an activated form of LRP6 and a beta-catenin-responsive reporter. This screen resulted in the identification of Bili, a Band4.1-domain containing protein, as a negative regulator of Wnt/beta-catenin signaling. We found that the expression of Bili in Drosophila embryos and larval imaginal discs significantly overlaps with the expression of Wingless (Wg), the Drosophila Wnt ortholog, which is consistent with a potential function for Bili in the Wg pathway. We then tested the functions of Bili in both invertebrate and vertebrate animal model systems. Loss-of-function studies in Drosophila and zebrafish embryos, as well as human cultured cells, demonstrate that Bili is an evolutionarily conserved antagonist of Wnt/beta-catenin signaling. Mechanistically, we found that Bili exerts its antagonistic effects by inhibiting the recruitment of AXIN to LRP6 required during pathway activation. CONCLUSIONS: These studies identify Bili as an evolutionarily conserved negative regulator of the Wnt/beta-catenin pathway
Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3.
RATIONALE: Recent work in animal models and humans has demonstrated the presence of organ-specific progenitor cells required for the regenerative capacity of the adult heart. In response to tissue injury, progenitor cells differentiate into specialized cells, while their numbers are maintained through mechanisms of self-renewal. The molecular cues that dictate the self-renewal of adult progenitor cells in the heart, however, remain unclear.
OBJECTIVE: We investigate the role of canonical Wnt signaling on adult cardiac side population (CSP) cells under physiological and disease conditions.
METHODS AND RESULTS: CSP cells isolated from C57BL/6J mice were used to study the effects of canonical Wnt signaling on their proliferative capacity. The proliferative capacity of CSP cells was also tested after injection of recombinant Wnt3a protein (r-Wnt3a) in the left ventricular free wall. Wnt signaling was found to decrease the proliferation of adult CSP cells, both in vitro and in vivo, through suppression of cell cycle progression. Wnt stimulation exerted its antiproliferative effects through a previously unappreciated activation of insulin-like growth factor binding protein 3 (IGFBP3), which requires intact IGF binding site for its action. Moreover, injection of r-Wnt3a after myocardial infarction in mice showed that Wnt signaling limits CSP cell renewal, blocks endogenous cardiac regeneration and impairs cardiac performance, highlighting the importance of progenitor cells in maintaining tissue function after injury.
CONCLUSIONS: Our study identifies canonical Wnt signaling and the novel downstream mediator, IGFBP3, as key regulators of adult cardiac progenitor self-renewal in physiological and pathological states
Disrupted in Schizophrenia 1 Regulates Neuronal Progenitor Proliferation via Modulation of GSK3β/β-Catenin Signaling
The Disrupted in Schizophrenia 1 (DISC1) gene is disrupted by a balanced chromosomal translocation (1; 11) (q42; q14.3) in a Scottish family with a high incidence of major depression, schizophrenia, and bipolar disorder. Subsequent studies provided indications that DISC1 plays a role in brain development. Here, we demonstrate that suppression of DISC1 expression reduces neural progenitor proliferation, leading to premature cell cycle exit and differentiation. Several lines of evidence suggest that DISC1 mediates this function by regulating GSK3β. First, DISC1 inhibits GSK3β activity through direct physical interaction, which reduces β-catenin phosphorylation and stabilizes β-catenin. Importantly, expression of stabilized β-catenin overrides the impairment of progenitor proliferation caused by DISC1 loss of function. Furthermore, GSK3 inhibitors normalize progenitor proliferation and behavioral defects caused by DISC1 loss of function. Together, these results implicate DISC1 in GSK3β/β-catenin signaling pathways and provide a framework for understanding how alterations in this pathway may contribute to the etiology of psychiatric disorders.National Alliance for Research on Schizophrenia and Depression (U.S.) (Young Investigator Award)Natural Sciences and Engineering Research Council of Canada (Postdoctoral Award)Human Frontier Science Program (Strasbourg, France) (Fellowship)Singleton FellowshipNational Institutes of Health (U.S.) (Grant NS37007
Endogenous Wnt/β-Catenin Signaling Is Required for Cardiac Differentiation in Human Embryonic Stem Cells
Wnt/beta-catenin signaling is an important regulator of differentiation and morphogenesis that can also control stem cell fates. Our group has developed an efficient protocol to generate cardiomyocytes from human embryonic stem (ES) cells via induction with activin A and BMP4.We tested the hypothesis that Wnt/beta-catenin signals control both early mesoderm induction and later cardiac differentiation in this system. Addition of exogenous Wnt3a at the time of induction enhanced cardiac differentiation, while early inhibition of endogenous Wnt/beta-catenin signaling with Dkk1 inhibited cardiac differentiation, as indicated by quantitative RT-PCR analysis for beta-myosin heavy chain (beta-MHC), cardiac troponin T (cTnT), Nkx2.5, and flow cytometry analysis for sarcomeric myosin heavy chain (sMHC). Conversely, late antagonism of endogenously produced Wnts enhanced cardiogenesis, indicating a biphasic role for the pathway in human cardiac differentiation. Using quantitative RT-PCR, we show that canonical Wnt ligand expression is induced by activin A/BMP4 treatment, and the extent of early Wnt ligand expression can predict the subsequent efficiency of cardiogenesis. Measurement of Brachyury expression showed that addition of Wnt3a enhances mesoderm induction, whereas blockade of endogenously produced Wnts markedly inhibits mesoderm formation. Finally, we show that Wnt/beta-catenin signaling is required for Smad1 activation by BMP4.Our data indicate that induction of mesoderm and subsequent cardiac differentiation from human ES cells requires fine-tuned cross talk between activin A/BMP4 and Wnt/beta-catenin pathways. Controlling these pathways permits efficient generation of cardiomyocytes for basic studies or cardiac repair applications
Depletion and activation of microglia impact metabolic connectivity of the mouse brain
AimWe aimed to investigate the impact of microglial activity and microglial FDG uptake on metabolic connectivity, since microglial activation states determine FDG-PET alterations. Metabolic connectivity refers to a concept of interacting metabolic brain regions and receives growing interest in approaching complex cerebral metabolic networks in neurodegenerative diseases. However, underlying sources of metabolic connectivity remain to be elucidated.Materials and methodsWe analyzed metabolic networks measured by interregional correlation coefficients (ICCs) of FDG-PET scans in WT mice and in mice with mutations in progranulin (Grn) or triggering receptor expressed on myeloid cells 2 (Trem2) knockouts ((-/-)) as well as in double mutant Grn(-/-)/Trem2(-/-) mice. We selected those rodent models as they represent opposite microglial signatures with disease associated microglia in Grn(-/-) mice and microglia locked in a homeostatic state in Trem2(-/-) mice;however, both resulting in lower glucose uptake of the brain. The direct influence of microglia on metabolic networks was further determined by microglia depletion using a CSF1R inhibitor in WT mice at two different ages. Within maps of global mean scaled regional FDG uptake, 24 pre-established volumes of interest were applied and assigned to either cortical or subcortical networks. ICCs of all region pairs were calculated and z-transformed prior to group comparisons. FDG uptake of neurons, microglia, and astrocytes was determined in Grn(-/-) and WT mice via assessment of single cell tracer uptake (scRadiotracing).ResultsMicroglia depletion by CSF1R inhibition resulted in a strong decrease of metabolic connectivity defined by decrease of mean cortical ICCs in WT mice at both ages studied (6-7 m;p = 0.0148, 9-10 m;p = 0.0191), when compared to vehicle-treated age-matched WT mice. Grn(-/-), Trem2(-/-) and Grn(-/-)/Trem2(-/-) mice all displayed reduced FDG-PET signals when compared to WT mice. However, when analyzing metabolic networks, a distinct increase of ICCs was observed in Grn(-/-) mice when compared to WT mice in cortical (p < 0.0001) and hippocampal (p < 0.0001) networks. In contrast, Trem2(-/-) mice did not show significant alterations in metabolic connectivity when compared to WT. Furthermore, the increased metabolic connectivity in Grn(-/-) mice was completely suppressed in Grn(-/-)/Trem2(-/-) mice. Grn(-/-) mice exhibited a severe loss of neuronal FDG uptake (- 61%, p < 0.0001) which shifted allocation of cellular brain FDG uptake to microglia (42% in Grn(-/-) vs. 22% in WT).ConclusionsPresence, absence, and activation of microglia have a strong impact on metabolic connectivity of the mouse brain. Enhanced metabolic connectivity is associated with increased microglial FDG allocation
- …