129 research outputs found

    Energy Dissipation and Trapping of Particles Moving on a Rough Surface

    Full text link
    We report an experimental, numerical and theoretical study of the motion of a ball on a rough inclined surface. The control parameters are DD, the diameter of the ball, θ\theta, the inclination angle of the rough surface and EkiE_{ki}, the initial kinetic energy. When the angle of inclination is larger than some critical value, θ>θT\theta>\theta_{T}, the ball moves at a constant average velocity which is independent of the initial conditions. For an angle θ<θT\theta < \theta_{T}, the balls are trapped after moving a certain distance. The dependence of the travelled distances on EkiE_{ki}, DD and θ\theta. is analysed. The existence of two kinds of mechanisms of dissipation is thus brought to light. We find that for high initial velocities the friction force is constant. As the velocity decreases below a certain threshold the friction becomes viscous.Comment: 8 pages RevTeX, 12 Postscript figure

    TEMPO-oxidized cellulose nanofibre (TOCN) films and composites with PVOH as sensitive dielectrics for microwave humidity sensing

    Get PDF
    This paper investigates TEMPO oxidized cellulose nanofibers (so-called TOCN)films as sensitive dielectrics for humidity detection in microwave frequencies. TOCN is used either as a sensitive material or as a host-matrix enclosing polyvinyl alcohol (PVOH)to achieve highly sensitive humidity sensing. A resonator in coplanar waveguide grounded (CPWG)technology was designed and fabricated. TOCN and TOCN/PVOH gels were dropped in the area of the resonator where the analysis showed the electromagnetic field to be maximum at the resonance. Gels became thin films after drying. Experimental humidity tests were then conducted within the 21.9–89.3%RH range, using the resonant frequency and the transmission phase as measurement variables. The best sensitivity with TOCN was 2.67 MHz/%RH regarding the resonant frequency, and 0.523°/%RH regarding the transmission phase. The effects of PVOH were visible starting from 55%RH, where the sensitivity was raised to 6.000 MHz/%RH and 0.785°/%RH respectively. © 2019 Elsevier B.V

    Printed microwave frequency humidity sensor operating with phase shifting scheme

    Get PDF
    This paper investigates a shifting sensing scheme combining slots, transmission lines, and printing technologies. This sensing scheme translates the electrical sensitivity of a transmission line conductor to the insertion phase as a measurement variable. A coplanar waveguide (CPW) based structure was designed, screen-printed, and tested on relative humidity (RH) conditions ranging from 22.8-75.3 %RH. For the first time, a composite material made of poly-pyrrole and TEMPO Oxidized Cellulose Nanofibers (TOCN/PPy) was integrated to the structure and studied as a humidity sensitive conductor in microwave frequencies. The measured sensitivity was 0.154°/%RH at 5.870 GHz, while insertion losses decreased by 1.26 dB. The effects of sensing layers thickness as well as trade-off considerations between phase sensitivity and signal attenuation were analyzed by simulation. © 2001-2012 IEEE

    Self-Supervised Relative Depth Learning for Urban Scene Understanding

    Full text link
    As an agent moves through the world, the apparent motion of scene elements is (usually) inversely proportional to their depth. It is natural for a learning agent to associate image patterns with the magnitude of their displacement over time: as the agent moves, faraway mountains don't move much; nearby trees move a lot. This natural relationship between the appearance of objects and their motion is a rich source of information about the world. In this work, we start by training a deep network, using fully automatic supervision, to predict relative scene depth from single images. The relative depth training images are automatically derived from simple videos of cars moving through a scene, using recent motion segmentation techniques, and no human-provided labels. This proxy task of predicting relative depth from a single image induces features in the network that result in large improvements in a set of downstream tasks including semantic segmentation, joint road segmentation and car detection, and monocular (absolute) depth estimation, over a network trained from scratch. The improvement on the semantic segmentation task is greater than those produced by any other automatically supervised methods. Moreover, for monocular depth estimation, our unsupervised pre-training method even outperforms supervised pre-training with ImageNet. In addition, we demonstrate benefits from learning to predict (unsupervised) relative depth in the specific videos associated with various downstream tasks. We adapt to the specific scenes in those tasks in an unsupervised manner to improve performance. In summary, for semantic segmentation, we present state-of-the-art results among methods that do not use supervised pre-training, and we even exceed the performance of supervised ImageNet pre-trained models for monocular depth estimation, achieving results that are comparable with state-of-the-art methods

    Effect of boundary conditions on diffusion in two-dimensional granular gases

    Full text link
    We analyze the influence of boundary conditions on numerical simulations of the diffusive properties of a two dimensional granular gas. We show in particular that periodic boundary conditions introduce unphysical correlations in time which cause the coefficient of diffusion to be strongly dependent on the system size. On the other hand, in large enough systems with hard walls at the boundaries, diffusion is found to be independent of the system size. We compare the results obtained in this case with Langevin theory for an elastic gas. Good agreement is found. We then calculate the relaxation time and the influence of the mass for a particle of radius RsR_s in a sea of particles of radius RbR_b. As granular gases are dissipative, we also study the influence of an external random force on the diffusion process in a forced dissipative system. In particular, we analyze differences in the mean square velocity and displacement between the elastic and inelastic cases.Comment: 15 figures eps figures, include

    Environmentally-friendly cellulose nanofibre sheets for humidity sensing in microwave frequencies

    Get PDF
    This paper investigates environment friendly cellulose nanofibres (CNF) as new and sensitive material for humidity sensing in RF/microwave frequencies. CNF sheets were fabricated by sonocatalyzed TEMPO process and physically characterized. Humidity sensing investigation was performed with CNF sheets taped on the top of circuits in coplanar waveguide (CPW) technology. This investigation includes sensitivity and dynamic range analysis with reflected waves along the CPW circuit through resonant frequency shift, and transmitted waves through S21 phase shift. Moreover, sheets with various amounts of CNF were used to study the influence of CNF weight on humidity sensing performances. Regarding the resonant frequency shift, the best sensitivity was measured with the weightier CNF film (71 g/m2), that is 2.82 MHz/%RH from 55%RH to 100%RH. Regarding the phase shift, the same film sensitivity is 0.7°/%RH from 70%RH to 100%RH, with a figure of merit of 7.43°/dB as a phase shifter. © 2017 Elsevier B.V

    Experimental and computational studies of jamming

    Full text link
    Jamming is a common feature of out of equilibrium systems showing slow relaxation dynamics. Here we review our efforts in understanding jamming in granular materials using experiments and computer simulations. We first obtain an estimation of an effective temperature for a slowly sheared granular material very close to jamming. The measurement of the effective temperature is realized in the laboratory by slowly shearing a closely-packed ensemble of spherical beads confined by an external pressure in a Couette geometry. All the probe particles, independent of their characteristic features, equilibrate at the same temperature, given by the packing density of the system. This suggests that the effective temperature is a state variable for the nearly jammed system. Then we investigate numerically whether the effective temperature can be obtained from a flat average over the jammed configuration at a given energy in the granular packing, as postulated by the thermodynamic approach to grains.Comment: 20 pages, 9 figure

    Numerical model for granular compaction under vertical tapping

    Full text link
    A simple numerical model is used to simulate the effect of vertical taps on a packing of monodisperse hard spheres. Our results are in agreement with an experimantal work done in Chicago and with other previous models, especially concerning the dynamics of the compaction, the influence of the excitation strength on the compaction efficiency, and some ageing effects. The principal asset of the model is that it allows a local analysis of the packings. Vertical and transverse density profiles are used as well as size and volume distributions of the pores. An interesting result concerns the appearance of a vertical gradient in the density profiles during compaction. Furthermore, the volume distribution of the pores suggests that the smallest pores, ranging in size between a tetrahedral and an octahedral site, are not strongly affected by the tapping process, in contrast to the largest pores which are more sensitive to the compaction of the packing.Comment: 8 pages, 15 figures (eps), to be published in Phys. Rev. E. Some corrections have been made, especially in paragraph IV

    The jamming transition of Granular Media

    Full text link
    We briefly review the basics ideas and results of a recently proposed statistical mechanical approach to granular materials. Using lattice models from standard Statistical Mechanics and results from a mean field replica approach and Monte Carlo simulations we find a jamming transition in granular media closely related to the glass transition in super-cooled liquids. These models reproduce the logarithmic relaxation in granular compaction and reversible-irreversible lines, in agreement with experimental data. The models also exhibit aging effects and breakdown of the usual fluctuation dissipation relation. It is shown that the glass transition may be responsible for the logarithmic relaxation and may be related to the cooperative effects underlying many phenomena of granular materials such as the Reynolds transition.Comment: 18 pages with 6 postscript figures. to appear in J.Phys: Cond. Ma

    Cracking Piles of Brittle Grains

    Full text link
    A model which accounts for cracking avalanches in piles of grains subject to external load is introduced and numerically simulated. The stress is stochastically transferred from higher layers to lower ones. Cracked areas exhibit various morphologies, depending on the degree of randomness in the packing and on the ductility of the grains. The external force necessary to continue the cracking process is constant in wide range of values of the fraction of already cracked grains. If the grains are very brittle, the force fluctuations become periodic in early stages of cracking. Distribution of cracking avalanches obeys a power law with exponent τ=2.4±0.1\tau = 2.4 \pm 0.1.Comment: RevTeX, 6 pages, 7 postscript figures, submitted to Phys. Rev.
    • …
    corecore