33 research outputs found
In Vivo Comparison of Two Human Norovirus Surrogates for Testing Ethanol-Based Handrubs: The Mouse Chasing the Cat!
Human noroviruses (HuNoV), a major cause of acute gastroenteritis worldwide, cannot be readily cultured in the lab. Therefore, a feline calicivirus (FCV) is often used as its surrogate to, among other things, test alcohol-based handrubs (ABHR). The more recent laboratory culture of a mouse norovirus (MNV) provides an alternative. While MNV is closer to HuNoV in several respects, to date, no comparative testing of FCV and MNV survival and inactivation on human hands has been performed. This study was designed to address the knowledge gap. The rates of loss in viability during drying on hands were −1.91 and −1.65% per minute for FCV and MNV, respectively. When the contaminated skin was exposed for 20 s to either a commercial ABHR with 62% (v/v) ethanol or to 75% (v/v) ethanol in water, FCV infectivity was reduced by <1 log10 while that of MNV by nearly 2.8 log10. Extending the contact time to 30 s reduced the FCV titer by almost 2 log10 by both test substances and that of MNV by >3.5 log10 by the commercial ABHR while 75% ethanol did not show any noticeable improvement in activity as compared to the 20 s contact. An 80% (v/v) aqueous solution of ethanol gave only a 1.75 log10 reduction in MNV activity after 20 s. The results show significant differences in the ethanol susceptibility of FCV and MNV in contact times relevant to field use of ABHR and also that 62% ethanol was a more effective virucide than either 75% or 80% ethanol. These findings indicate the need for a review of the continuing use of FCV as a surrogate for HuNoV
Detection of Hepatitis A Virus by the Nucleic Acid Sequence-Based Amplification Technique and Comparison with Reverse Transcription-PCR
A nucleic acid sequence-based amplification (NASBA) technique for the detection of hepatitis A virus (HAV) in foods was developed and compared to the traditional reverse transcription (RT)-PCR technique. Oligonucleotide primers targeting the VP1 and VP2 genes encoding the major HAV capsid proteins were used for the amplification of viral RNA in an isothermal process resulting in the accumulation of RNA amplicons. Amplicons were detected by hybridization with a digoxigenin-labeled oligonucleotide probe in a dot blot assay format. Using the NASBA, as little as 0.4 ng of target RNA/ml was detected per comparison to 4 ng/ml for RT-PCR. When crude HAV viral lysate was used, a detection limit of 2 PFU (4 × 10(2) PFU/ml) was obtained with NASBA, compared to 50 PFU (1 × 10(4) PFU/ml) obtained with RT-PCR. No interference was encountered in the amplification of HAV RNA in the presence of excess nontarget RNA or DNA. The NASBA system successfully detected HAV recovered from experimentally inoculated samples of waste water, lettuce, and blueberries. Compared to RT-PCR and other amplification techniques, the NASBA system offers several advantages in terms of sensitivity, rapidity, and simplicity. This technique should be readily adaptable for detection of other RNA viruses in both foods and clinical samples
Early infection and asymptomatic spread of hepatitis A virus in a public child care center in Rio de Janeiro, Brazil: should attending children under two years of age be vaccinated?
A cross-sectional study was conducted in order to identify hepatitis A virus (HAV) serological markers in 418 individuals (mean age, 16.4 years; range, 1 month-80 years) at a public child care center in Rio de Janeiro, Brazil, as well as to analyze risk factors and determine circulating genotypes. Serum samples were tested using an enzyme immunoassay. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect and characterize HAV RNA, and sequencing was performed. Anti-HAV antibodies and IgM anti-HAV antibodies were detected, respectively, in 89.5% (374/418) and 10.5% (44/418) of the individuals tested. Acute HAV infection in children was independently correlated with crawling (p < 0.05). In 56.8% (25/44) of the IgM anti-HAV-positive individuals and in 33.3% (5/15) of the IgM anti-HAV-negative individuals presenting clinical symptoms, HAV RNA was detected. Phylogenetic analysis revealed co-circulation of subgenotypes IA and IB in 93.3% (28/30) of the amplified samples. In present study, we verify that 79% (30/38) of children IgM anti-HAV-positive were asymptomatic. In child care centers, this asymptomatic spread is a more serious problem, promoting the infection of young children, who rarely show signs of infection. Therefore, vaccinating children below the age of two might prevent the asymptomatic spread of hepatitis A
New Method Using a Positively Charged Microporous Filter and Ultrafiltration for Concentration of Viruses from Tap Water â–¿
The methods used to concentrate enteric viruses from water have remained largely unchanged for nearly 30 years, with the most common technique being the use of 1MDS Virozorb filters followed by organic flocculation for secondary concentration. Recently, a few studies have investigated alternatives; however, many of these methods are impractical for use in the field or share some of the limitations of this traditional method. In the present study, the NanoCeram virus sampler, an electropositive pleated microporous filter composed of microglass filaments coated with nanoalumina fibers, was evaluated. Test viruses were first concentrated by passage of 20 liters of seeded water through the filter (average filter retention efficiency was ≥99.8%), and then the viruses were recovered using various salt-based or proteinaceous eluting solutions. A 1.0% sodium polyphosphate solution with 0.05 M glycine was determined to be the most effective. The recovered viruses were then further concentrated using Centricon Plus-70 centrifugal ultrafilters to a final volume of 3.3 (±0.3 [standard deviation]) ml; this volume compares quite favorably to that of previously described methods, such as organic flocculation (∼15 to 40 ml). The overall virus recovery efficiencies were 66% for poliovirus 1, 83% for echovirus 1, 77% for coxsackievirus B5, 14% for adenovirus 2, and 56% for MS2 coliphage. In addition, this method appears to be compatible with both cell culture and PCR assays. This new approach for the recovery of viruses from water is therefore a viable alternative to currently used methods when small volumes of final concentrate are an advantage