232 research outputs found

    Selection for litter size in pigs. II. Efficiency of closed and open selection lines*

    Get PDF
    A selection experiment on litter size in the pig was carried on for seventeen generations in an Inra experimental herd. The founder population was made up of 10 males and 120 females from the Large White breed. Selection was first performed for ten generations in a closed line, compared to a control line derived from the same founder population. Selection was carried on within sire family on the total number of piglets born in the first two litters of the dam (TB1 + TB2). After ten generations, the selection criterion became dam TB1 only. The control line was then discontinued and a panel of frozen semen from the 11th generation boars was created for later comparisons. The selected line was opened to gilt daughters of hyperprolific boars and sows, at a rate of 1/8 per generation, and the same selection procedure was applied irrespective of the origin of the gilt. During the whole experiment, the number of ova shed (OS) and the number of live embryos (LE) at 30 days in the 3rd pregnancy were recorded. These two parts of the experiment were analysed using REML estimation of genetic parameters and a BLUP-Animal Model in order to estimate the responses to selection. Significant heritabilities for TB1, TB2, OS and LE were obtained, i.e. 0.10, 0.05, 0.43 and 0.19, respectively. Significant common environment variances and covariances were estimated for nearly all traits. Significantly positive BLUP responses per generation were observed from G0 to G17 for TB1 (+0.086), TB2 (+0.078), OS (+0.197) and LE (+0.157). However, the responses were 3- to 4-fold higher in the G12–G17 interval compared to G0–G11, and they were also in fair agreement with previous estimates based on standard least-squares procedures, using the control line and the control frozen semen panel. Since G11, the selection intensity was increased by nearly 80 p. cent compared to the previous generations, and the proportion of hyperprolific ancestry increased up to 65 p. cent in the sows of the last generation. The total genetic gain of about 1.4 piglets at birth per litter could be shared between a gain due to immigration, of about 0.8 piglets per litter, and a within-line selection gain of about 0.6 piglets. Thus by combining selection and immigration in the second part of the experiment, advantage could be taken from both the genetic superiority of the immigrants and the higher internal selection intensity made possible by immigration

    A further look at quantitative trait loci affecting growth and fatness in a cross between Meishan and Large White pig populations

    Get PDF
    A detailed quantitative trait locus (QTL) analysis of growth and fatness data from a three generation experimental cross between Large White (LW) and Meishan (MS) pig breeds was carried out to search for sex × QTL interactions, imprinting effects and multiple linked QTLs. A total of 530 F2 males and 573 F2 females issued from 6 F1 boars and 23 F1 sows were typed for a total of 137 markers covering the entire porcine genome. Nine growth traits and three backfat thickness measurements were analysed. All analyses were performed using line cross regression procedures. A QTL with sex-specific expression was revealed in the proximal region of chromosome 8, although some confusion between herd and sex effects could not be discarded. This previously undetected QTL affected male growth during the fattening period, with a favourable additive effect of the LW allele. The analyses also revealed the presence of two linked QTLs segregating on chromosome 1, affecting growth traits during the post-weaning period. The first QTL, previously detected using a single QTL model, was located at the end of the q arm of chromosome 1 and had a favourable MS allele. The second QTL had a favourable LW allele and was located in the proximal extremity of the q arm of chromosome 1. Suggestive genomic imprinting was found in the distal region of chromosome 9 affecting growth during the fattening period

    Genetic parameters and genetic trends in the Chinese × European Tiameslan composite pig line. II. Genetic trends

    Get PDF
    The Tiameslan line was created between 1983 and 1985 by mating Meishan × Jiaxing crossbred Chinese boars with sows from the Laconie composite male line. The Tiameslan line has been selected since then on an index combining average backfat thickness (ABT) and days from 20 to 100 kg (DT). Direct and correlated responses to 11 years of selection were estimated using BLUP methodology applied to a multiple trait animal model. A total of 11 traits were considered, i.e.: ABT, DT, body weight at 4 (W4w), 8 (W8w) and 22 (W22w) weeks of age, teat number (TEAT), number of good teats (GTEAT), total number of piglets born (TNB), born alive (NBA) and weaned (NW) per litter, and birth to weaning survival rate (SURV). Performance data from a total of 4 881 males and 4 799 females from 1 341 litters were analysed. The models included both direct and maternal effects for ABT, W4w and W8w. Male and female performances were considered as different traits for W22w, DT and ABT. Genetic parameters estimated in another paper (Zhang et al., Genet. Sel. Evol. 32 (2000) 41-56) were used to perform the analyses. Favourable phenotypic (ΔP) and direct genetic trends (ΔGd) were obtained for post-weaning growth traits and ABT. Trends for maternal effects were limited. Phenotypic and genetic trends were larger in females than in males for ABT (e.g. ΔGd = -0.48 vs. -0.38 mm/year), were larger in males for W22w (ΔGd = 0.90 vs. 0.58 kg/year) and were similar in both sexes for DT (ΔGd = -0.54 vs. -0.55 day/year). Phenotypic and genetic trends were slightly favourable for W4w, W8w, TEAT and GTEAT and close to zero for reproductive traits

    Genetic parameters and genetic trends in the Chinese × European Tiameslan composite pig line. I. Genetic parameters

    Get PDF
    Genetic parameters of body weight at 4 (W4 w), 8 (W8 w) and 22 (W22 w) weeks of age, days from 20 to 100 kg (DT), average backfat thickness at 100 kg (ABT), teat number (TEAT), number of good teats (GTEAT), total number of piglets born (TNB), born alive (NBA) and weaned (NW) per litter, and birth to weaning survival rate (SURV) were estimated in the Chinese × European Tiameslan composite line using restricted maximum likelihood methodology applied to a multiple trait animal model. Performance data from a total of 4 881 males and 4 799 females from 1 341 litters were analysed. Different models were fitted to the data in order to estimate the importance of maternal effects on production traits, as well as genetic correlations between male and female performance. The results showed the existence of significant maternal effects on W4w, W8w and ABT and of variance heterogeneity between sexes for W22w, DT, ABT and GTEAT. Genetic correlations between sexes were 0.79, 0.71 and 0.82, respectively, for W22w, DT and ABT and above 0.90 for the other traits. Heritability estimates were larger than (ABT and TEAT) or similar to (other traits) average literature values. Some genetic antagonism was evidenced between production traits, particularly W4w, W8w and ABT, and reproductive traits

    Likelihood and Bayesian analyses reveal major genes affecting body composition, carcass, meat quality and the number of false teats in a Chinese European pig line

    Get PDF
    Segregation analyses were performed using both maximum likelihood – via a Quasi Newton algorithm – (ML-QN) and Bayesian – via Gibbs sampling – (Bayesian-GS) approaches in the Chinese European Tiameslan pig line. Major genes were searched for average ultrasonic backfat thickness (ABT), carcass fat (X2 and X4) and lean (X5) depths, days from 20 to 100 kg (D20100), Napole technological yield (NTY), number of false (FTN) and good (GTN) teats, as well as total teat number (TTN). The discrete nature of FTN was additionally considered using a threshold model under ML methodology. The results obtained with both methods consistently suggested the presence of major genes affecting ABT, X2, NTY, GTN and FTN. Major genes were also suggested for X4 and X5 using ML-QN, but not the Bayesian-GS, approach. The major gene affecting FTN was confirmed using the threshold model. Genetic correlations as well as gene effect and genotype frequency estimates suggested the presence of four different major genes. The first gene would affect fatness traits (ABT, X2 and X4), the second one a leanness trait (X5), the third one NTY and the last one GTN and FTN. Genotype frequencies of breeding animals and their evolution over time were consistent with the selection performed in the Tiameslan line

    Combining two Meishan F2 crosses improves the detection of QTL on pig chromosomes 2, 4 and 6

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In pig, a number of experiments have been set up to identify QTL and a multitude of chromosomal regions harbouring genes influencing traits of interest have been identified. However, the mapping resolution remains limited in most cases and the detected QTL are rather inaccurately located. Mapping accuracy can be improved by increasing the number of phenotyped and genotyped individuals and/or the number of informative markers. An alternative approach to overcome the limited power of individual studies is to combine data from two or more independent designs.</p> <p>Methods</p> <p>In the present study we report a combined analysis of two independent design (a French and a Dutch F2 experimental designs), with 2000 F2 individuals. The purpose was to further map QTL for growth and fatness on pig chromosomes 2, 4 and 6. Using QTL-map software, uni- and multiple-QTL detection analyses were applied separately on the two pedigrees and then on the combination of the two pedigrees.</p> <p>Results</p> <p>Joint analyses of the combined pedigree provided (1) greater significance of shared QTL, (2) exclusion of false suggestive QTL and (3) greater mapping precision for shared QTL.</p> <p>Conclusions</p> <p>Combining two Meishan x European breeds F2 pedigrees improved the mapping of QTL compared to analysing pedigrees separately. Our work was facilitated by the access to raw phenotypic data and DNA of animals from both pedigrees and the combination of the two designs with the addition of new markers allowed us to fine map QTL without phenotyping additional animals.</p

    Progeny-testing of full-sibs IBD in a SSC2 QTL region highlights epistatic interactions for fatness traits in pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many QTL have been detected in pigs, but very few of them have been fine-mapped up to the causal mutation. On SSC2, the <it>IGF2</it>-intron3-G3072A mutation has been described as the causative polymorphism for a QTL underlying muscle mass and backfat deposition, but further studies have demonstrated that at least one additional QTL should segregate downstream of this mutation. A marker-assisted backcrossing design was set up in order to confirm the segregation of this second locus, reduce its confidence interval and better understand its mode of segregation.</p> <p>Results</p> <p>Five recombinant full-sibs, with genotype G/G at the <it>IGF2 </it>mutation, were progeny-tested. Only two of them displayed significant QTL for fatness traits although four inherited the same paternal and maternal chromosomes, thus exhibiting the same haplotypic contrast in the QTL region. The hypothesis of an interaction with another region in the genome was proposed to explain these discrepancies and after a genome scan, four different regions were retained as potential interacting regions with the SSC2 QTL. A candidate interacting region on SSC13 was confirmed by the analysis of an F2 pedigree, and in the backcross pedigree one haplotype in this region was found to mask the SSC2 QTL effect.</p> <p>Conclusions</p> <p>Assuming the hypothesis of interactions with other chromosomal regions, the QTL could be unambiguously mapped to a 30 cM region delimited by recombination points. The marker-assisted backcrossing design was successfully used to confirm the segregation of a QTL on SSC2 and, because full-sibs that inherited the same alleles from their two parents were analysed, the detection of epistatic interactions could be performed between alleles and not between breeds as usually done with the traditional Line-Cross model. Additional analyses of other recombinant sires should provide more information to further improve the fine-mapping of this locus, and confirm or deny the interaction identified between chromosomes 2 and 13.</p
    corecore