9 research outputs found

    Flare stars in nearby Galactic open clusters based on TESS data

    Get PDF
    The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type objects. Of all flares, 63 % were detected in sample of cool stars (Teff<5000 K), and 29 % -- in stars of spectral type G, while 23 % in K-type stars and approximately 34% of all detected flares are in M-type stars. Using the FLATW'RM (FLAre deTection With Ransac Method) flare finding algorithm, we estimated parameters of flares and rotation period of detected flare stars. The flare with the largest amplitude appears on the M3 type EQ Cha star. Statistical analysis did not reveal any direct correlation between ages, rotation periods and flaring activity

    Catalogue of BRITE-Constellation targets I. Fields 1 to 14 (November 2013 - April 2016)

    Full text link
    The BRIght Target Explorer (BRITE) mission collects photometric time series in two passbands aiming to investigate stellar structure and evolution. Since their launches in the years 2013 and 2014, the constellation of five BRITE nano-satellites has observed a total of more than 700 individual bright stars in 64 fields. Some targets have been observed multiple times. Thus, the total time base of the data sets acquired for those stars can be as long as nine years. Our aim is to provide a complete description of ready-to-use BRITE data, to show the scientific potential of the BRITE-Constellation data by identifying the most interesting targets, and to demonstrate and encourage how scientists can use these data in their research. We apply a decorrelation process to the automatically reduced BRITE-Constellation data to correct for instrumental effects. We perform a statistical analysis of the light curves obtained for the 300 stars observed in the first 14 fields during the first ~2.5 years of the mission. We also perform cross-identification with the International Variable Star Index. We present the data obtained by the BRITE-Constellation mission in the first 14 fields it observed from November 2013 to April 2016. We also describe the properties of the data for these fields and the 300 stars observed in them. Using these data, we detected variability in 64% of the presented sample of stars. Sixty-four stars or 21.3% of the sample have not yet been identified as variable in the literature and their data have not been analysed in detail. They can therefore provide valuable scientific material for further research. All data are made publicly available through the BRITE Public Data Archive and the Canadian Astronomy Data Centre.Comment: accepted by Astronomy & Astrophysics, 13 pages main text, 22 pages of appendi

    Analysis of Solar-like X-class Flare on Wolf 359 Observed Simultaneously with TESS and XMM-Newton

    No full text
    We present an analysis of a flare on the Wolf 359 star based on simultaneous observations of Transiting Exoplanet Survey Satellite and XMM-Newton. A stellar flare with energy comparable to an X-class solar flare is analyzed on this star for the first time. The main goal of the study was to determine whether the same physical processes drive and occur in stellar flares as in solar flares. We tried to estimate the flare class by various direct and indirect methods. Light curves and spectra in different energy ranges were used to determine the parameters and profiles of the flare. From the XMM-Newton EPIC-pn X-ray data, we estimated the temperature and emission measure during the flare. The thermodynamical timescale and the loop semi-length were also determined with two different methods. The RGS spectra enabled us to calculate the differential emission measure (DEM) distributions. The obtained DEM distributions have three components at temperature values of 3, 7, and 16–17 MK. The analysis of the line ratio in helium-like triplets allowed us to determine the plasma electron density. Our results for the flare loop on Wolf 359 were compared to typical parameters for solar flares observed with GOES and RHESSI. This supports our conclusion that the processes taking place in stellar flares are like those in solar flares. The determined geometrical parameters of the phenomenon do not differ from the values of analogs occurring on the Sun
    corecore