11 research outputs found

    A Focus on Intermediate-Risk Acute Myeloid Leukemia: Sub-Classification Updates and Therapeutic Challenges

    Get PDF
    Simple Summary Risk stratification models, including the European LeukemiaNet 2017 and 2022 guidelines, categorize newly diagnosed acute myeloid leukemia (AML) patients into several subgroups of distinct genetic characteristics and disease outcomes. The intermediate-risk group remains the most heterogenous group, as most AML patients fall into it (i.e., a basket category) by virtue of not fulfilling criteria that identify specific entities (e.g., core-binding factor AML, TP53 mutations, complex karyotypes) of well-recognized prognostic significance. In this review, we aim to discuss the latest updates on intermediate-risk definition and highlight the therapeutic advances and challenges that warrant refining the prognostic classification of this category. Acute myeloid leukemia (AML) represents a heterogeneous group of hematopoietic neoplasms deriving from the abnormal proliferation of myeloid progenitors in the bone marrow. Patients with AML may have highly variable outcomes, which are generally dictated by individual clinical and genomic characteristics. As such, the European LeukemiaNet 2017 and 2022 guidelines categorize newly diagnosed AML into favorable-, intermediate-, and adverse-risk groups, based on their molecular and cytogenetic profiles. Nevertheless, the intermediate-risk category remains poorly defined, as many patients fall into this group as a result of their exclusion from the other two. Moreover, further genomic data with potential prognostic and therapeutic influences continue to emerge, though they are yet to be integrated into the diagnostic and prognostic models of AML. This review highlights the latest therapeutic advances and challenges that warrant refining the prognostic classification of intermediate-risk AML

    The Genomics of Myelodysplastic Syndromes: Origins of Disease Evolution, Biological Pathways, and Prognostic Implications

    No full text
    The molecular pathogenesis of myelodysplastic syndrome (MDS) is complex due to the high rate of genomic heterogeneity. Significant advances have been made in the last decade which elucidated the landscape of molecular alterations (cytogenetic abnormalities, gene mutations) in MDS. Seminal experimental studies have clarified the role of diverse gene mutations in the context of disease phenotypes, but the lack of faithful murine models and/or cell lines spontaneously carrying certain gene mutations have hampered the knowledge on how and why specific pathways are associated with MDS pathogenesis. Here, we summarize the genomics of MDS and provide an overview on the deregulation of pathways and the latest molecular targeted therapeutics

    Pulmonary Lymphangitic Spread of Multiple Myeloma as Early Relapse after Autologous Stem Cell Transplantation

    No full text
    Clinical relapses early after autologous stem cell transplantation portrays an inferior clinical outcome. Early relapse in this setting with extramedullary disease (EMD) of lung involvement in multiple myeloma is rare. To our knowledge, this is the first reported case of lymphangitic spread of myeloma with pulmonary parenchymal and pleural involvement occurring at first relapse

    A Comprehensive Review of the Genomics of Multiple Myeloma: Evolutionary Trajectories, Gene Expression Profiling, and Emerging Therapeutics

    Get PDF
    Multiple myeloma (MM) is a blood cancer characterized by the accumulation of malignant monoclonal plasma cells in the bone marrow. It develops through a series of premalignant plasma cell dyscrasia stages, most notable of which is the Monoclonal Gammopathy of Undetermined Significance (MGUS). Significant advances have been achieved in uncovering the genomic aberrancies underlying the pathogenesis of MGUS-MM. In this review, we discuss in-depth the genomic evolution of MM and focus on the prognostic implications of the accompanied molecular and cytogenetic aberrations. We also dive into the latest investigatory techniques used for the diagnoses and risk stratification of MM patients

    The effect of Gamma Knife radiosurgery on large posterior fossa metastases and the associated mass effect from peritumoral edema

    No full text
    ©AANS 2021, except where prohibited by US copyright law OBJECTIVE Gamma Knife radiosurgery (GKRS) as monotherapy is an option for the treatment of large (≥ 2 cm) posterior fossa brain metastases (LPFMs). However, there is concern regarding possible posttreatment increase in peritumoral edema (PTE) and associated compression of the fourth ventricle. This study evaluated the effects and safety of GKRS on tumor and PTE control in LPFM. METHODS The authors performed a single-center retrospective review of 49 patients with 51 LPFMs treated with GKRS. Patients with at least 1 clinical and radiological follow-up visit were included. Tumor, PTE, and fourth ventricle volumetric measurements were used to assess efficacy and safety. Overall survival was a secondary outcome. RESULTS Fifty-one lesions in 49 consecutive patients were identified; 57.1% of patients were male. At the time of GKRS, the median age was 61.5 years, and the median Karnofsky Performance Status score was 90. The median number of LPFMs and overall brain metastases were 1 and 2, respectively. The median overall tumor, PTE, and fourth ventricle volumes at diagnosis were 4.96 cm3 (range 1.4–21.1 cm3), 14.98 cm3 (range 0.6–71.8 cm3), and 1.23 cm3 (range 0.3–3.2 cm3), respectively, and the median lesion diameter was 2.6 cm (range 2.0–5.07 cm). The median follow-up time was 7.3 months (range 1.6–57.2 months). At the first follow-up, 2 months posttreatment, the median tumor volume decreased by 58.66% (range −96.95% to +48.69%, p \u3c 0.001), median PTE decreased by 78.10% (range −99.92% to +198.35%, p \u3c 0.001), and the fourth ventricle increased by 24.97% (range −37.96% to +545.6%, p \u3c 0.001). The local control rate at first follow-up was 98.1%. The median OS was 8.36 months. No patient required surgical intervention, external ventricular drainage, or shunting between treatment and first follow-up. However, 1 patient required a ventriculoperitoneal shunt at 23 months from treatment. Posttreatment, 65.30% received our general steroid taper, 6.12% received no steroids, and 28.58% required prolonged steroid treatment. CONCLUSIONS In this retrospective analysis, patients with LPFMs treated with GKRS had a statistically significant posttreatment reduction in tumor size and PTE and marked opening of the fourth ventricle (all p \u3c 0.001). This study demonstrates that GKRS is well tolerated and can be considered in the management of select cases of LPFMs, especially in patients who are poor surgical candidates

    The effect of Gamma Knife radiosurgery on large posterior fossa metastases and the associated mass effect from peritumoral edema

    No full text
    ©AANS 2021, except where prohibited by US copyright law OBJECTIVE Gamma Knife radiosurgery (GKRS) as monotherapy is an option for the treatment of large (≥ 2 cm) posterior fossa brain metastases (LPFMs). However, there is concern regarding possible posttreatment increase in peritumoral edema (PTE) and associated compression of the fourth ventricle. This study evaluated the effects and safety of GKRS on tumor and PTE control in LPFM. METHODS The authors performed a single-center retrospective review of 49 patients with 51 LPFMs treated with GKRS. Patients with at least 1 clinical and radiological follow-up visit were included. Tumor, PTE, and fourth ventricle volumetric measurements were used to assess efficacy and safety. Overall survival was a secondary outcome. RESULTS Fifty-one lesions in 49 consecutive patients were identified; 57.1% of patients were male. At the time of GKRS, the median age was 61.5 years, and the median Karnofsky Performance Status score was 90. The median number of LPFMs and overall brain metastases were 1 and 2, respectively. The median overall tumor, PTE, and fourth ventricle volumes at diagnosis were 4.96 cm3 (range 1.4–21.1 cm3), 14.98 cm3 (range 0.6–71.8 cm3), and 1.23 cm3 (range 0.3–3.2 cm3), respectively, and the median lesion diameter was 2.6 cm (range 2.0–5.07 cm). The median follow-up time was 7.3 months (range 1.6–57.2 months). At the first follow-up, 2 months posttreatment, the median tumor volume decreased by 58.66% (range −96.95% to +48.69%, p \u3c 0.001), median PTE decreased by 78.10% (range −99.92% to +198.35%, p \u3c 0.001), and the fourth ventricle increased by 24.97% (range −37.96% to +545.6%, p \u3c 0.001). The local control rate at first follow-up was 98.1%. The median OS was 8.36 months. No patient required surgical intervention, external ventricular drainage, or shunting between treatment and first follow-up. However, 1 patient required a ventriculoperitoneal shunt at 23 months from treatment. Posttreatment, 65.30% received our general steroid taper, 6.12% received no steroids, and 28.58% required prolonged steroid treatment. CONCLUSIONS In this retrospective analysis, patients with LPFMs treated with GKRS had a statistically significant posttreatment reduction in tumor size and PTE and marked opening of the fourth ventricle (all p \u3c 0.001). This study demonstrates that GKRS is well tolerated and can be considered in the management of select cases of LPFMs, especially in patients who are poor surgical candidates

    Monoclonal Gammopathy of Renal Significance (MGRS): Real-World data on outcomes and prognostic factors

    No full text
    : Monoclonal Gammopathy of Renal Significance (MGRS) is a recognized clinical entity. Literature regarding treatment and its outcomes in MGRS is sparse due to the rarity and misdiagnosis of MGRS. We retrospectively analyzed 280 adults with an MGRS diagnosis from 2003-2020 across 19 clinical centers from 12 countries. All cases required renal biopsy for the pathological diagnosis of MGRS. Amyloidosis-related to MGRS (MGRS-A) was present in 180 patients; non-amyloidosis MGRS (MGRS-NA), including a broad spectrum of renal pathologies, was diagnosed in 100 patients. The median overall survival in the studied cohort was 121.0 months (95% CI: 105.0 - 121.0). Patients with MGRS-A had a shorter overall survival than patients with MGRS-NA (HR = 0.41, 95%CI: 0.25 - 0.69; P = 0.0007). Both hematologic and renal responses were associated with longer survival. Achievement of ≥VGPR was generally predictive of a renal response (OR = 8.03 95%CI: 4.04 - 115.96; P < 0.0001), one-fourth of patients with ≥VGPR were renal non-responders. In MGRS-A, factors associated with poor prognosis included elevated levels of creatinine, beta-2-microglobulin, and hemodialysis at diagnosis. In MGRS-NA, only age > 65 years was associated with increased risk of death. Treatments provided similar hematologic response rates in both types of MGRS. Autologous stem cell transplantation led to better response than other treatments. This multicenter and international effort is currently the largest report on MGRS. This article is protected by copyright. All rights reserved
    corecore