557 research outputs found

    Problem gambling: a suitable case for social work?

    Get PDF
    Problem gambling attracts little attention from health and social care agencies in the UK. Prevalence surveys suggest that 0.6% of the population are problem gamblers and it is suggested that for each of these individuals, 10–17 other people, including children and other family members, are affected. Problem gambling is linked to many individual and social problems including: depression, suicide, significant debt, bankruptcy, family conflict, domestic violence, neglect and maltreatment of children and offending. This makes the issue central to social work territory. Yet, the training of social workers in the UK has consistently neglected issues of addictive behaviour. Whilst some attention has been paid in recent years to substance abuse issues, there has remained a silence in relation to gambling problems. Social workers provide more help for problems relating to addictions than other helping professions. There is good evidence that treatment, and early intervention for gambling problems, including psycho-social and public health approaches, can be very effective. This paper argues that problem gambling should be moved onto the radar of the social work profession, via inclusion on qualifying and post-qualifying training programmes and via research and dissemination of good practice via institutions such as the Social Care Institute for Excellence (SCIE). Keywords: problem gambling; addictive behaviour; socia

    Collision geometry scaling of Au+Au pseudorapidity density from sqrt(s_NN) = 19.6 to 200 GeV

    Full text link
    The centrality dependence of the midrapidity charged particle multiplicity in Au+Au collisions at sqrt(s_NN) = 19.6 and 200 GeV is presented. Within a simple model, the fraction of hard (scaling with number of binary collisions) to soft (scaling with number of participant pairs) interactions is consistent with a value of x = 0.13 +/- 0.01(stat) +/- 0.05(syst) at both energies. The experimental results at both energies, scaled by inelastic p(pbar)+p collision data, agree within systematic errors. The ratio of the data was found not to depend on centrality over the studied range and yields a simple linear scale factor of R_(200/19.6) = 2.03 +/- 0.02(stat) +/- 0.05(syst).Comment: 5 pages, 4 figures, submitted to PRC-R

    Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at sqrt(sNN) = 200 GeV

    Full text link
    This paper describes the measurement of elliptic flow for charged particles in Au+Au collisions at sqrt(sNN)=200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). The measured azimuthal anisotropy is presented over a wide range of pseudorapidity for three broad collision centrality classes for the first time at this energy. Two distinct methods of extracting the flow signal were used in order to reduce systematic uncertainties. The elliptic flow falls sharply with increasing eta at 200 GeV for all the centralities studied, as observed for minimum-bias collisions at sqrt(sNN)=130 GeV.Comment: Final published version: the most substantive change to the paper is the inclusion of a complete description of how the errors from the hit-based and track-based analyses are merged to produce the 90% C.L. errors quoted for the combined results shown in Fig.

    Centrality dependence of charged antiparticle to particle ratios near mid-rapidity in d+Au collisions at sqrt(s_NN)=200 GeV

    Full text link
    The ratios of the yields of charged antiparticles to particles have been obtained for pions, kaons, and protons near mid-rapidity for d+Au collisions at sqrt(s_NN) = 200 GeV as a function of centrality. The reported values represent the ratio of the yields averaged over the rapidity range of 0.1<y_pi<1.3 and 0<y_(K,p)<0.8, where positive rapidity is in the deuteron direction, and for transverse momenta 0.1<p_(T)^(pi,K)<1.0 GeV/c and 0.3<p_(T)^(p)<1.0 GeV/c. Within the uncertainties, a lack of centrality dependence is observed in all three ratios. The data are compared to results from other systems and model calculations.Comment: 6 pages, 4 figures, submitted to PR

    System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    Full text link
    This paper presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system

    Latest Results from PHOBOS

    Get PDF
    This manuscript contains a summary of the latest physics results from PHOBOS, as reported at Quark Matter 2006. Highlights include the first measurement from PHOBOS of dynamical elliptic flow fluctuations as well as an explanation of their possible origin, two-particle correlations, identified particle ratios, identified particle spectra and the latest results in global charged particle production.Comment: 9 pages, 7 figures, PHOBOS plenary proceedings for Quark Matter 200

    System size, energy, centrality and pseudorapidity dependence of charged-particle density in Au+Au and Cu+Cu collisions at RHIC

    Full text link
    Charged particle pseudorapidity distributions are presented from the PHOBOS experiment at RHIC, measured in Au+Au and Cu+Cu collisions at sqrt{s_NN}=19.6, 22.4, 62.4, 130 and 200 GeV, as a function of collision centrality. The presentation includes the recently analyzed Cu+Cu data at 22.4 GeV. The measurements were made by the same detector setup over a broad range in pseudorapidity, |eta|<5.4, allowing for a reliable systematic study of particle production as a function of energy, centrality and system size. Comparing Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the overall shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants, N_part. Detailed comparisons reveal that the matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of eta is better for the same N_part/2A value than for the same N_part value, where A denotes the mass number. In other words, it is the geometry of the nuclear overlap zone, rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence.Comment: 5 pages, 4 figures. Presented at the 20th International Conference on Nucleus-Nucleus Collisions (Quark Matter 2008), Jaipur, Rajasthan, India, 4-10 February 200

    Charged-Particle Pseudorapidity Distributions in Au+Au Collisions at sqrt(s_NN)=62.4 GeV

    Full text link
    The charged-particle pseudorapidity density for Au+Au collisions at sqrt(s_NN)=62.4 GeV has been measured over a wide range of impact parameters and compared to results obtained at other energies. As a function of collision energy, the pseudorapidity distribution grows systematically both in height and width. The mid-rapidity density is found to grow approximately logarithmically between AGS energies and the top RHIC energy. As a function of centrality, there is an approximate factorization of the centrality dependence of the mid-rapidity yields and the overall multiplicity scale. The new results at sqrt(s_NN)=62.4 GeV confirm the previously observed phenomenon of ``extended longitudinal scaling'' in the pseudorapidity distributions when viewed in the rest frame of one of the colliding nuclei. It is also found that the evolution of the shape of the distribution with centrality is energy independent, when viewed in this reference frame. As a function of centrality, the total charged particle multiplicity scales linearly with the number of participant pairs as it was observed at other energies.Comment: 6 pages, 7 figures, submitted to Phys. Rev. C - Rapid Communication

    Elliptic Flow in Au+Au Collisions at RHIC

    Full text link
    Elliptic flow is an interesting probe of the dynamical evolution of the dense system formed in the ultrarelativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). The elliptic flow dependences on transverse momentum, centrality, and pseudorapidity were measured using data collected by the PHOBOS detector, which offers a unique opportunity to study the azimuthal anisotropies of charged particles over a wide range of pseudorapidity. These measurements are presented, together with an overview of the analysis methods and a discussion of the results.Comment: Presented at Hot Quarks 2004; 7 pages, 6 figure

    Event-by-event fluctuations of azimuthal particle anisotropy in Au+Au collisions at sqrt(s_NN) = 200 GeV

    Full text link
    This paper presents the first measurement of event-by-event fluctuations of the elliptic flow parameter v_2 in Au+Au collisions at sqrt(s_NN) = 200GeV as a function of collision centrality. The relative non-statistical fluctuations of the v_2 parameter are found to be approximately 40%. The results, including contributions from event-by-event elliptic flow fluctuations and from azimuthal correlations that are unrelated to the reaction plane (non-flow correlations), establish an upper limit on the magnitude of underlying elliptic flow fluctuations. This limit is consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. These results provide important constraints on models of the initial state and hydrodynamic evolution of relativistic heavy ion collisions.Comment: 5 pages, 2 figures, Published in Phys. Rev. Lett
    corecore