1,106 research outputs found
Heavy Quarkonia Production in p+p Collisions from the PHENIX Experiment
Quarkonia provide a sensitive probe of the properties of the hot dense medium
created in high energy heavy ion collisions. Hard scattering processes result
in the production of heavy quark pairs that interact with the collision medium
during hadronization. These in-medium interactions convey information about the
fundamental properties of the medium itself and can be used to examine the
modification of the QCD confining potential in the collision environment.
Baseline measurements from p+p and d+Au collision systems are used to
distinguish cold nuclear matter effects while measurements from heavy ion
collision systems are used to quantify in-medium effects. The PHENIX experiment
has the capability of detecting heavy quarkonia at via the
decay channel and at via the decay channel.
Recent runs have resulted in the collection of high statistics p+p data sets
that provide an essential baseline reference for heavy ion measurements and
allow for further critical evaluation of heavy quarkonia production mechanisms.
The latest PHENIX results for the production of the in p+p collisions
are presented and future prospects for , and
measurements are discussed.Comment: 4 pages, 2 figures, Proceedings for Quark Matter 200
Diels–alder reactions of alkyl 2H-azirine-3-carboxylates with furans
Methyl 2-(2,6-dichlorophenyl)-2H-azirine-3-carboxylate 1 and furan give the aziridine 2 by a Diels–Alder cycloaddition reaction. The hydrolysis of compound 2 leads to a dihydrofuranol 11 by cleavage of a C–N bond. X-Ray crystal structures of compounds 2 and 11 have been determined. Compound 2 reacts with alcohols in a similar way to give 2-alkoxy-2,5-dihydrofurans as mixtures of cis and trans isomers. The structures of these compounds have been determined from an X-ray crystal structure of one of the methyl ethers, the trans isomer 13. The reaction of the azirine 1 with 1,3-diphenylisobenzofuran leads to the formation of two isomeric 1 : 1 adducts that have been identified as the products of endo and exo cycloaddition, 3 and 4. The endo isomer 3 is converted into the exo isomer 4 by heat. Similar Diels–Alder reactions have been carried out between furans and benzyl 2H-azirine-3-carboxylate 6. Hydrolysis of the adduct 7 formed with furan again produces a dihydrofuranol 25 as the major product together with three minor products, two of which are 1-azabicyclo[4.1.0]hept-3-ene-2,5-diols 27 and 28 that result from C–O bond cleavage. Protection of the mixture of alcohols with TBS triflate gives the bis(TBS) ether 31 of the trans-1-azabicyclo[4.1.0]hept-3-ene-2,5-diol as the major product, showing that this ring system can be produced from the dihydrofuranol 25. The bis(TBS) ether 30 of the cis-2,5-diol is a minor product and its structure has been established by independent synthesis through a Diels–Alder reaction between the azirine 6 and 1,4-bis(tert-butyldimethylsilyloxy)butadiene 32.Fundação para a Ciência e Tecnologia - POCTI/32723/QUI/2000. FEDER. EPSRC
Experience with Community‐Based Amphotericin B Infusion Therapy
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90368/1/phco.25.5.690.63591.pd
Transverse Spin at PHENIX: Results and Prospects
The Relativistic Heavy Ion Collider (RHIC), as the world's first and only
polarized proton collider, offers a unique environment in which to study the
spin structure of the proton. In order to study the proton's transverse spin
structure, the PHENIX experiment at RHIC took data with transversely polarized
beams in 2001-02 and 2005, and it has plans for further running with transverse
polarization in 2006 and beyond. Results from early running as well as
prospective measurements for the future will be discussed.Comment: 6 pages, 2 figures, presented at Transversity 2005, Como, Ital
Centrality dependence of charged antiparticle to particle ratios near mid-rapidity in d+Au collisions at sqrt(s_NN)=200 GeV
The ratios of the yields of charged antiparticles to particles have been
obtained for pions, kaons, and protons near mid-rapidity for d+Au collisions at
sqrt(s_NN) = 200 GeV as a function of centrality. The reported values represent
the ratio of the yields averaged over the rapidity range of 0.1<y_pi<1.3 and
0<y_(K,p)<0.8, where positive rapidity is in the deuteron direction, and for
transverse momenta 0.1<p_(T)^(pi,K)<1.0 GeV/c and 0.3<p_(T)^(p)<1.0 GeV/c.
Within the uncertainties, a lack of centrality dependence is observed in all
three ratios. The data are compared to results from other systems and model
calculations.Comment: 6 pages, 4 figures, submitted to PR
Centrality dependence of charged hadron transverse momentum spectra in d+Au collisions at sqrt(s_NN) = 200 GeV
We have measured transverse momentum distributions of charged hadrons
produced in d+Au collisions at sqrt(s_NN) = 200 GeV. The spectra were obtained
for transverse momenta 0.25 < p_T < 6.0 GeV/c, in a pseudorapidity range of 0.2
< eta < 1.4 in the deuteron direction. The evolution of the spectra with
collision centrality is presented in comparison to p+pbarcollisions at the same
collision energy. With increasing centrality, the yield at high transverse
momenta increases more rapidly than the overall particle density, leading to a
strong modification of the spectral shape. This change in spectral shape is
qualitatively different from observations in Au+Au collisions at the same
energy. The results provide important information for discriminating between
different models for the suppression of high-p_T hadrons observed in Au+Au
collisions.Comment: 5 pages, 4 figures, submitted to PR
Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at sqrt(sNN) = 200 GeV
This paper describes the measurement of elliptic flow for charged particles
in Au+Au collisions at sqrt(sNN)=200 GeV using the PHOBOS detector at the
Relativistic Heavy Ion Collider (RHIC). The measured azimuthal anisotropy is
presented over a wide range of pseudorapidity for three broad collision
centrality classes for the first time at this energy. Two distinct methods of
extracting the flow signal were used in order to reduce systematic
uncertainties. The elliptic flow falls sharply with increasing eta at 200 GeV
for all the centralities studied, as observed for minimum-bias collisions at
sqrt(sNN)=130 GeV.Comment: Final published version: the most substantive change to the paper is
the inclusion of a complete description of how the errors from the hit-based
and track-based analyses are merged to produce the 90% C.L. errors quoted for
the combined results shown in Fig.
Forward-Backward Multiplicity Correlations in sqrt(s_NN) = 200 GeV Gold-Gold Collisions
Forward-backward correlations of charged-particle multiplicities in symmetric
bins in pseudorapidity are studied in order to gain insight into the underlying
correlation structure of particle production in Au+Au collisions. The PHOBOS
detector is used to measure integrated multiplicities in bins centered at eta,
defined within |eta|<3, and covering intervals Delta-eta. The variance
sigma^2_C of a suitably defined forward-backward asymmetry variable C is
calculated as a function of eta, Delta-eta, and centrality. It is found to be
sensitive to short range correlations, and the concept of "clustering'' is used
to interpret comparisons to phenomenological models.Comment: 5 Pages, 5 Figures, submitted to Physical Review C -- Rapid
Communication
Latest Results from PHOBOS
This manuscript contains a summary of the latest physics results from PHOBOS,
as reported at Quark Matter 2006. Highlights include the first measurement from
PHOBOS of dynamical elliptic flow fluctuations as well as an explanation of
their possible origin, two-particle correlations, identified particle ratios,
identified particle spectra and the latest results in global charged particle
production.Comment: 9 pages, 7 figures, PHOBOS plenary proceedings for Quark Matter 200
System size, energy, centrality and pseudorapidity dependence of charged-particle density in Au+Au and Cu+Cu collisions at RHIC
Charged particle pseudorapidity distributions are presented from the PHOBOS
experiment at RHIC, measured in Au+Au and Cu+Cu collisions at sqrt{s_NN}=19.6,
22.4, 62.4, 130 and 200 GeV, as a function of collision centrality. The
presentation includes the recently analyzed Cu+Cu data at 22.4 GeV. The
measurements were made by the same detector setup over a broad range in
pseudorapidity, |eta|<5.4, allowing for a reliable systematic study of particle
production as a function of energy, centrality and system size. Comparing Cu+Cu
and Au+Au results, we find that the total number of produced charged particles
and the overall shape (height and width) of the pseudorapidity distributions
are determined by the number of nucleon participants, N_part. Detailed
comparisons reveal that the matching of the shape of the Cu+Cu and Au+Au
pseudorapidity distributions over the full range of eta is better for the same
N_part/2A value than for the same N_part value, where A denotes the mass
number. In other words, it is the geometry of the nuclear overlap zone, rather
than just the number of nucleon participants that drives the detailed shape of
the pseudorapidity distribution and its centrality dependence.Comment: 5 pages, 4 figures. Presented at the 20th International Conference on
Nucleus-Nucleus Collisions (Quark Matter 2008), Jaipur, Rajasthan, India,
4-10 February 200
- …
