448 research outputs found

    Corner overgrowth: Bending a high mobility two-dimensional electron system by 90 degrees

    Full text link
    Introducing an epitaxial growth technique called corner overgrowth, we fabricate a quantum confinement structure consisting of a high-mobility GaAs/AlGaAs heterojunction overgrown on top of an ex-situ cleaved substrate corner. The resulting corner-junction quantum-well heterostructure effectively bends a two-dimensional electron system (2DES) at an atomically sharp 90o90^{\rm o} angle. The high-mobility 2DES demonstrates fractional quantum Hall effect on both facets. Lossless edge-channel conduction over the corner confirms a continuum of 2D electrons across the junction, consistent with Schroedinger-Poisson calculations of the electron distribution. This growth technique differs distinctly from cleaved-edge overgrowth and enables a complementary class of new embedded quantum heterostructures.Comment: 3 pages, 4 figures, latest version accepted to AP

    OvA-INN: Continual Learning with Invertible Neural Networks

    Full text link
    In the field of Continual Learning, the objective is to learn several tasks one after the other without access to the data from previous tasks. Several solutions have been proposed to tackle this problem but they usually assume that the user knows which of the tasks to perform at test time on a particular sample, or rely on small samples from previous data and most of them suffer of a substantial drop in accuracy when updated with batches of only one class at a time. In this article, we propose a new method, OvA-INN, which is able to learn one class at a time and without storing any of the previous data. To achieve this, for each class, we train a specific Invertible Neural Network to extract the relevant features to compute the likelihood on this class. At test time, we can predict the class of a sample by identifying the network which predicted the highest likelihood. With this method, we show that we can take advantage of pretrained models by stacking an Invertible Network on top of a feature extractor. This way, we are able to outperform state-of-the-art approaches that rely on features learning for the Continual Learning of MNIST and CIFAR-100 datasets. In our experiments, we reach 72% accuracy on CIFAR-100 after training our model one class at a time.Comment: to be published in IJCNN 202

    Kondo effect in a few-electron quantum ring

    Get PDF
    A small quantum ring with less than 10 electrons was studied by transport spectroscopy. For strong coupling to the leads a Kondo effect is observed and used to characterize the spin structure of the system in a wide range of magnetic fields. At small magnetic fields Aharonov-Bohm oscillations influenced by Coulomb interaction appear. They exhibit phase jumps by π\pi at the Coulomb-blockade resonances. Inside Coulomb-blockade valleys the Aharonov-Bohm oscillations can also be studied due to the finite conductance caused by the Kondo effect. Astonishingly, the maxima of the oscillations show linear shifts with magnetic field and gate voltage.Comment: 4 pages, 4 figure

    Combined atomic force microscope and electron-beam lithography used for the fabrication of variable-coupling quantum dots

    Get PDF
    We have combined direct nanofabrication by local anodic oxidation with conventional electron-beam lithography to produce a parallel double quantum dot based on a GaAs/AlGaAs heterostructure. The combination of both nanolithography methods allows to fabricate robust in-plane gates and Cr/Au top gate electrodes on the same device for optimal controllability. This is illustrated by the tunability of the interdot coupling in our device. We describe our fabrication and alignment scheme in detail and demonstrate the tunability in low-temperature transport measurements.Comment: 4 pages, 3 figure

    Optically Probing Spin and Charge Interactions in an Tunable Artificial Molecule

    Get PDF
    We optically probe and electrically control a single artificial molecule containing a well defined number of electrons. Charge and spin dependent inter-dot quantum couplings are probed optically by adding a single electron-hole pair and detecting the emission from negatively charged exciton states. Coulomb and Pauli blockade effects are directly observed and hybridization and electrostatic charging energies are independently measured. The inter-dot quantum coupling is confirmed to be mediated predominantly by electron tunneling. Our results are in excellent accord with calculations that provide a complete picture of negative excitons and few electron states in quantum dot molecules.Comment: shortened version: 6 pages, 3 figures, 1 table, to appear in Phys. Rev. Let

    Quantum Hall Effect in a Two-Dimensional Electron System Bent by 90 Degrees

    Full text link
    Using a new MBE growth technique, we fabricate a two-dimensional electron system which is bent around an atomically sharp 90 degree corner. In the quantum Hall regime under tilted magnetic fields, we can measure equilibration between both co- and counter-propagating edge channels of arbitrary filling factor ratio. We present here 4-point magnetotransport characterization of the corner junction with filling factor combinations which can all be explained using the standard Landauer-Buttiker edge channel picture. The success of this description confirms the realization of a new type of quantum Hall edge geometry.Comment: 4 pages, figures included Typographical errors corrected, reference adde

    New Anisotropic Behavior of Quantum Hall Resistance in (110) GaAs Heterostructures at mK Temperatures and Fractional Filling Factors

    Full text link
    Transport experiments in high mobility (110) GaAs heterostructures have been performed at very low temperatures 8 mK. At higher Landau-Levels we observe a transport anisotropy that bears some similarity with what is already seen at half-odd-integer filling on (001) oriented substrates. In addition we report the first observation of transport anisotropies within the lowest Landau-Level. This remarkable new anisotropy is independent of the current direction and depends on the polarity of the magnetic field.Comment: 3 Pages, 4 figures, Latex, uses elsart.cls and physart.cls, to be published in Physica E Added reference, made contact configuration more clea

    Aluminum arsenide cleaved-edge overgrown quantum wires

    Full text link
    We report conductance measurements in quantum wires made of aluminum arsenide, a heavy-mass, multi-valley one-dimensional (1D) system. Zero-bias conductance steps are observed as the electron density in the wire is lowered, with additional steps observable upon applying a finite dc bias. We attribute these steps to depopulation of successive 1D subbands. The quantum conductance is substantially reduced with respect to the anticipated value for a spin- and valley-degenerate 1D system. This reduction is consistent with disorder-induced, intra-wire backscattering which suppresses the transmission of 1D modes. Calculations are presented to demonstrate the role of strain in the 1D states of this cleaved-edge structure.Comment: Submitted to Applied Physics Letter
    corecore