29 research outputs found

    The Human Serum Metabolome

    Get PDF
    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca

    Binding sites and actions of Tx1, a neurotoxin from the venom of the spider Phoneutria nigriventer, in guinea pig ileum

    No full text
    Tx1, a neurotoxin isolated from the venom of the South American spider Phoneutria nigriventer, produces tail elevation, behavioral excitation and spastic paralysis of the hind limbs after intracerebroventricular injection in mice. Since Tx1 contracts isolated guinea pig ileum, we have investigated the effect of this toxin on acetylcholine release, as well as its binding to myenteric plexus-longitudinal muscle membranes from the guinea pig ileum. [125I]-Tx1 binds specifically and with high affinity (Kd = 0.36 ± 0.02 nM) to a single, non-interacting (nH = 1.1), low capacity (Bmax 1.1 pmol/mg protein) binding site. In competition experiments using several compounds (including ion channel ligands), only PhTx2 and PhTx3 competed with [125I]-Tx1 for specific binding sites (K0.5 apparent = 7.50 x 10-4 g/l and 1.85 x 10-5 g/l, respectively). PhTx2 and PhTx3, fractions from P. nigriventer venom, contain toxins acting on sodium and calcium channels, respectively. However, the neurotoxin PhTx2-6, one of the isoforms found in the PhTx2 pool, did not affect [125I]-Tx1 binding. Tx1 reduced the [3H]-ACh release evoked by the PhTx2 pool by 33%, but did not affect basal or KCl-induced [3H]-ACh release. Based on these results, as well as on the homology of Tx1 with toxins acting on calcium channels (<FONT FACE="Symbol">w</font>-Aga IA and IB) and its competition with [125I]-<FONT FACE="Symbol">w</font>-Cono GVIA in the central nervous system, we suggest that the target site for Tx1 may be calcium channels
    corecore