244 research outputs found

    The structure of a single sharp quantum Hall edge probed by momentum-resolved tunneling

    Full text link
    Momentum resolved magneto-tunnelling spectroscopy is performed at a single sharp quantum Hall edge. We directly probe the structure of individual integer quantum Hall (QH) edge modes, and find that an epitaxially overgrown cleaved edge realizes the sharp edge limit, where the Chklovskii picture relevant for soft etched or gated edges is no longer valid. The Fermi wavevector in the probe quantum well probes the real-space position of the QH edge modes, and reveals inter-channel distances smaller than both the magnetic length and the Bohr radius. We quantitatively describe the lineshape of principal conductance peaks and deduce an edge filling factor from their position consistent with the bulk value. We observe features in the dispersion which are attributed to fluctuations in the ground energy of the quantum Hall system.Comment: 4 pages, 3 figure

    Magnetic Transformations in the Organic Conductor kappa-(BETS)2Mn[N(CN)2]3 at the Metal-Insulator Transition

    Full text link
    A complex study of magnetic properties including dc magnetization, 1H NMR and magnetic torque measurements has been performed for the organic conductor kappa-(BETS)2Mn[N(CN)2]3 which undergoes a metal-insulator transition at T_MI~25K. NMR and the magnetization data indicate a transition in the manganese subsystem from paramagnetic to a frozen state at T_MI, which is, however, not a simple Neel type order. Further, a magnetic field induced transition resembling a spin flop has been detected in the torque measurements at temperatures below T_MI. This transition is most likely related to the spins of pi-electrons localized on the organic molecules BETS and coupled with the manganese 3d spins via exchange interaction.Comment: 6 pages, 5 Figures, 1 Table; Submitted to Phys.Rev.B (Nov.2010

    Probing the Electrostatics of Integer Quantum Hall Edges with Momentum-Resolved Tunnel Spectroscopy

    Full text link
    We present measurements of momentum-resolved magneto-tunneling from a perpendicular two-dimensional (2D) contact into integer quantum Hall (QH) edges at a sharp edge potential created by cleaved edge overgrowth. Resonances in the tunnel conductance correspond to coincidences of electronic states of the QH edge and the 2D contact in energy-momentum space. With this dispersion relation reflecting the potential distribution at the edge we can directly measure the band bending at our cleaved edge under the influence of an external voltage bias. At finite bias we observe significant deviations from the flat-band condition in agreement with self-consistent calculations of the edge potential

    Grid based energy system setup optimisation with Rivus in dedicated regions

    Get PDF
    Within the project IDEE (Integrated Design Efficient Energy systems in urban regions) the expertise of four cross-border (Italia & Austria) research centres and one public authority is bundled up to support the planning of new setups or the extension of existing setups in grid based sustainable energy systems for pilot regions inside the project areas. A special focus within the project is the optimization of network topologies in district heating setups. First scenarios on possible system setups for the pilot regions have been calculated outlining the topology of optimal pipe setups as well as the load of (Heat-) pipes at different time steps with the objective to minimise overall system costs. Keywords: District heating, Optimization, Network calculation, MIL

    Correlation between Fermi surface transformations and superconductivity in the electron-doped high-TcT_c superconductor Nd2x_{2-x}Cex_xCuO4_4

    Full text link
    Two critical points have been revealed in the normal-state phase diagram of the electron-doped cuprate superconductor Nd2x_{2-x}Cex_xCuO4_4 by exploring the Fermi surface properties of high quality single crystals by high-field magnetotransport. First, the quantitative analysis of the Shubnikov-de Haas effect shows that the weak superlattice potential responsible for the Fermi surface reconstruction in the overdoped regime extrapolates to zero at the doping level xc=0.175x_c = 0.175 corresponding to the onset of superconductivity. Second, the high-field Hall coefficient exhibits a sharp drop right below optimal doping xopt=0.145x_{\mathrm{opt}} = 0.145 where the superconducting transition temperature is maximum. This drop is most likely caused by the onset of long-range antiferromagnetic ordering. Thus, the superconducting dome appears to be pinned by two critical points to the normal state phase diagram.Comment: 9 pages; 7 figures; 1 tabl

    Field-induced charge-density-wave transitions in the organic metal α-(BEDT-TTF)₂KHg(SCN)₄ under pressure

    No full text
    Successive magnetic-field-induced charge-density-wave transitions in the layered molecular conductor α-(BEDT-TTF)₂KHg(SCN)₄ are studied in the hydrostatic pressure regime, in which the zero field chargedensity-wave (CDW) state is completely suppressed. The orbital effect of the magnetic field is demonstrated to restore the density wave, while the orbital quantization induces transitions between different CDW states at changing the field strength. The latter appear as distinct anomalies in the magnetoresistance as a function of field. The interplay between the orbital and Pauli paramagnetic effects acting, respectively, to enhance and to suppress the CDW instability is particularly manifest in the angular dependence of the field-induced anomalies
    corecore