7 research outputs found

    C1QBP Inhibits DUX4-Dependent Gene Activation and Can Be Targeted with 4MU

    Get PDF
    FSHD is linked to the misexpression of the DUX4 gene contained within the D4Z4 repeat array on chromosome 4. The gene encodes the DUX4 protein, a cytotoxic transcription factor that presumably causes the symptoms of the disease. However, individuals have been identified who express DUX4 in their muscle biopsies, but who remain asymptomatic, suggesting that there are other factors that modify FSHD penetrance or severity. We hypothesized that an FSHD-modifying factor would physically interact with DUX4, and we took a proteomic approach to identify DUX4-interacting proteins. We identified the multifunctional C1QBP protein as one such factor. C1QBP is known to regulate several processes that DUX4 affects, including gene expression, oxidative stress, apoptosis, and pre-mRNA splicing. We used siC1QBP knockdown assays to determine if C1QBP affects DUX4 activity. While C1QBP had little effect on DUX4 activity in myotubes, we found that it inhibits the kinetics of DUX4-target gene activation during myogenic differentiation. This identifies C1QBP as a regulator of DUX4 activity and a potential target for FSHD therapeutics. Importantly, C1QBP is regulated by binding to the signaling molecule hyaluronic acid (HA). Decreasing HA by treating cells with 4-methylumbelliferone (4MU), an inhibitor of HA synthesis, resulted in a sharp decline in DUX4 activity and also greatly reduced its cytotoxicity. We have found that DUX4-induced cytotoxicity is associated with severe mislocalizaton of C1QBP, which is prevented by 4MU. This defect is not a downstream result of DUX4-induced oxidative stress, as it could not be prevented by treating cells with an antioxidant, nor could it be recapitulated by exposing cells to oxidants. This identifies C1QBP as a target for the treatment of FSHD, and in particular indicates that 4MU, already an approved drug in Europe and currently under investigation for other indications, may be an effective C1QBP-targeting FSHD therapeutic compound

    Analysis of Myogenic and Candidate Disease Biomarkers in FSHD Muscle Cells

    Get PDF
    The UMMS Wellstone Program is a foundation and NIH-funded cooperative research center focusing on identifying biomarkers for facioscapulohumeral muscular dystrophy (FSHD) to gain insight into the molecular pathology of the disease and to develop potential therapies. FSHD is characterized by progressive wasting of skeletal muscles, with weakness often initiating in facial muscles and muscles supporting the scapula and upper arms. While the genetics associated with FSHD are complex, the major form of the disease, FSHD1, is linked to contraction of the D4Z4 repeat region located at chromosome 4q. Recently, a transcript encoded at the distal end of the repeat region, Dux4-fl, normally expressed in embryonic stem cells and germ cells, was also detected in differentiated muscle cells and biopsies from FSHD subjects, giving rise to the hypothesis that DUX4-FL function contributes to muscle weakness. We established a repository of high quality, well-characterized primary and immortalized muscle cell strains from FSHD and control subjects in affected families to provide biomaterials for cell and molecular studies to the FSHD research community. qPCR and immunostaining analyses demonstrate similar growth and differentiation characteristics in cells from FSHD and control subjects within families. We detected Dux4-fl transcript and protein in FSHD cells as recently described; interestingly, we also detected Dux4-fl in muscle cells from a subset of control individuals, suggesting that any Dux4-fl-mediated myopathy would require additional modifying elements. Microarray analysis of FSHD and control muscle cells demonstrated that several genes were upregulated in FSHD cells, including genes that were concurrently identified as downstream targets of Dux4-fl and as candidate FSHD disease genes. Future studies will further characterize the RNA and protein expression of candidate disease genes in cells from FSHD and control subjects, including nonmanifesting subjects with the D4Z4 lesion but no muscle weakness, and utilizing whole transcriptome sequencing (RNAseq) to identify additional candidates

    Transcriptional profiling in facioscapulohumeral muscular dystrophy to identify candidate biomarkers

    No full text
    Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disorder caused by contractions of repetitive elements within the macrosatellite D4Z4 on chromosome 4q35. The pathophysiology of FSHD is unknown and, as a result, there is currently no effective treatment available for this disease. To better understand the pathophysiology of FSHD and develop mRNA-based biomarkers of affected muscles, we compared global analysis of gene expression in two distinct muscles obtained from a large number of FSHD subjects and their unaffected first-degree relatives. Gene expression in two muscle types was analyzed using GeneChip Gene 1.0 ST arrays: biceps, which typically shows an early and severe disease involvement; and deltoid, which is relatively uninvolved. For both muscle types, the expression differences were mild: using relaxed cutoffs for differential expression (fold change \u3e/=1.2; nominal P value \u3c0.01), we identified 191 and 110 genes differentially expressed between affected and control samples of biceps and deltoid muscle tissues, respectively, with 29 genes in common. Controlling for a false-discovery rate of \u3c0.25 reduced the number of differentially expressed genes in biceps to 188 and in deltoid to 7. Expression levels of 15 genes altered in this study were used as a molecular signature in a validation study of an additional 26 subjects and predicted them as FSHD or control with 90% accuracy based on biceps and 80% accuracy based on deltoids

    Proton MR spectroscopic imaging in Pelizaeus-Merzbacher disease

    No full text
    Pelizeaus-Merzbacher disease (PMD) is a clinically and molecularly heterogeneous disorder linked to deletion, mutations, or duplication of the proteolipid protein (PLP1) gene locus at Xq22. The current study was conducted to characterize the results of proton MR spectroscopic (MRS) imaging in PMD

    A unique library of myogenic cells from facioscapulohumeral muscular dystrophy subjects and unaffected relatives: family, disease and cell function

    No full text
    To explore possible mechanisms of pathology in facioscapulohumeral muscular dystrophy (FSHD), we generated a novel library of myogenic cells composed of paired cultures derived from FSHD subjects and unaffected first-degree relatives. We prepared cells from biopsies of both biceps and deltoid muscles obtained from each of 10 FSHD and 9 unaffected donors. We used this new collection to determine how family background and disease affected patterns of growth and differentiation, expression of a panel of candidate, and muscle-specific genes, and responses to exogenous stressors. We found that FSHD and unaffected cells had, on average, indistinguishable patterns of differentiation, gene expression, and dose-response curves to staurosporine, paraquat, hydrogen peroxide, and glutathione depletion. Differentiated FSHD and unaffected cultures were both more sensitive to glutathione depletion than proliferating cultures, but showed similar responses to paraquat, staurosporine, and peroxide. For stress responses, the sample size was sufficient to detect a 10% change in effect at the observed variability with a power of \u3e99%. In contrast, for each of these properties, we found significant differences among cells from different cohorts, and these differences were independent of disease status, gender, or muscle biopsied. Thus, though none of the properties we examined could be used to reliably distinguish between FSHD and unaffected cells, family of origin was an important contributor to gene-expression patterns and stressor responses in cultures of both FSHD and unaffected myogenic cells
    corecore