11 research outputs found

    2D continuous spectrum of shear Alfven waves in the presence of a magnetic island

    Full text link
    The radial structure of the continuous spectrum of shear Alfven modes is calculated in the presence of a magnetic island in tokamak plasmas. Modes with the same helicity of the magnetic island are considered in a slab model approximation. In this framework, with an appropriate rotation of the coordinates the problem reduces to 2 dimensions. Geometrical effects due to the shape of the flux surface's cross section are retained to all orders. On the other hand, we keep only curvature effects responsible of the beta induced gap in the low-frequency part of the continuous spectrum. New continuum accumulation points are found at the O-point of the magnetic island. The beta-induced Alfven Eigenmodes (BAE) continuum accumulation point is found to be positioned at the separatrix flux surface. The most remarkable result is the nonlinear modification of the BAE continuum accumulation point frequency

    Continuous Spectrum of Shear Alfven Waves within Magnetic Islands

    No full text
    The radial structure of the shear Alfven wave continuous spectrum is calculated inside the separatrix of a magnetic island. We find that, within a magnetic island, there is a continuous spectrum very similar to that of tokamak plasmas, where a generalized safety factor q can be defined and a wide frequency gap is formed, analogous to the ellipticity induced Alfven eigenmode gap in tokamaks. This is due to the strong eccentricity of the island cross section. In this gap, a magnetic-island induced Alfven eigenmode (MIAE) can exist as a bound state, essentially free of continuum damping, which can be resonantly excited by energetic particles and interact nonlinearly with the magnetic island. Because of the frequency dependence of the shear Alfven wave continuum on the magnetic-island size, the possibility of utilizing MIAE frequency scalings as a novel magnetic-island diagnostic is also discussed

    Overview of the FTU results

    No full text
    Spontaneous increases in plasma density, up to similar to 1.6 times the Greenwald value, are observed in FTU with lithized walls. These plasmas are characterized by profile peaking up to the highest obtained densities. The transport analysis of these discharges shows a 20% enhancement of the energy confinement time, with respect to the ITER97 L-mode scaling, correlated with a threshold in the peaking factor. It has been found that 0.4 MW of ECRH power, coupled at q = 2 surface, are sufficient to avoid disruptions in 0.5 MA discharges. Direct heating of magnetic islands produced by MHD modes determines current quench delay or avoidance. Supra-thermal electrons generated by 0.5 MW of lower hybrid power are sufficient to trigger precursors of the electron-fishbone instability. Evidence of spatial redistribution of fast electrons, on the similar to 100 mu s typical mode timescale, is shown by the fast electrons bremsstrahlung diagnostic. From the presence of new magnetic island induced accumulation points in the continuous spectrum of the shear Alfven wave spectrum, the existence of new magnetic island induced Alfven eigenmodes (MiAE) is suggested. Due to the frequency dependence on the magnetic island size, the feasibility of utilizing MiAE continuum effects as a novel magnetic island diagnostic is also discussed. Langmuir probes have been used on FTU to identify hypervelocity (10 km s(-1)), micrometre size, dust grains. The Thomson scattering diagnostic was also used to characterize the dust grains, present in the FTU vacuum chamber, following a disruption. Analysis of the broad emitted light spectrum was carried out and a model taking into account the particle vaporization is compared with the data. A new oblique ECE diagnostic has been installed and the first results, both in the presence of lower hybrid or electron cyclotron waves, are being compared with code predictions. A time-of-flight refractometer at 60 GHz, which could be a good candidate for the ITER density feedback control system, has also been tested

    Overview of FTU results

    No full text
    New FTU ohmic discharges with a liquid lithium limiter at IP = 0.7–0.75 MA, BT = 7 T and ne0 ≥ 5 × 1020 m−3 confirm the spontaneous transition to an enhanced confinement regime, 1.3–1.4 times ITER-97-L, when the density peaking factor is above a threshold value of 1.7–1.8. The improved confinement derives from a reduction of electron thermal conductivity (χe) as density increases, while ion thermal conductivity (χi) remains close to neoclassical values. Linear microstability reveals the importance of lithium in triggering a turbulent inward flux for electrons and deuterium by changing the growth rates and phase of the ion-driven turbulence, while lithium flux is always directed outwards. A particle diffusion coefficient, D ~ 0.07 m2 s−1, and an inward pinch velocity, V ~ 0.27 m s−1, in qualitative agreement with Bohm–gyro-Bohm predictions are inferred in pellet fuelled lithized discharges. Radio frequency heated plasmas benefit from cleaner plasmas with edge optimized conditions. Lower hybrid waves penetration and current drive effects are clearly demonstrated at and above ITER densities thanks to a good control of edge parameters obtained by plasma operations with the external poloidal limiter, lithized walls and pellet fuelling. The electron cyclotron (EC) heating system is extensively exploited in FTU for contributing to ITER-relevant issues such as MHD control: sawtooth crash is actively controlled and density limit disruptions are avoided by central and off-axis deposition of 0.3 MW of EC power at 140 GHz. Fourier analysis shows that the density drop and the temperature rise, stimulated by modulated EC power in low collisionality plasmas are synchronous, implying that the heating method is the common cause of both the electron heating and the density drop. Perpendicularly injected electron cyclotron resonance heating is demonstrated to be more efficient than the obliquely injected one, reducing the minimum electric field required at breakdown by a factor of 3. Theoretical activity further develops the model to interpret high-frequency fishbones on FTU and other experiments as well as to characterize beta-induced Alfvén eigenmodes induced by magnetic islands in ohmic discharges. The theoretical framework of the general fishbone-like dispersion relation is used for implementing an extended version of the HMGC hybrid MHD gyrokinetic code. The upgraded version of HMGC will be able to handle fully compressible non-linear gyrokinetic equations and 3D MHD

    Overview of FTU results

    No full text
    New FTU ohmic discharges with a liquid lithium limiter at I(P) = 0.7-0.75 MA, B(T) = 7 T and n(e0) >= 5 x 10(20) m(-3) confirm the spontaneous transition to an enhanced confinement regime, 1.3-1.4 times ITER-97-L, when the density peaking factor is above a threshold value of 1.7-1.8. The improved confinement derives from a reduction of electron thermal conductivity (chi(e)) as density increases, while ion thermal conductivity (chi(i)) remains close to neoclassical values. Linear microstability reveals the importance of lithium in triggering a turbulent inward flux for electrons and deuterium by changing the growth rates and phase of the ion-driven turbulence, while lithium flux is always directed outwards. A particle diffusion coefficient, D similar to 0.07 m(2) s(-1), and an inward pinch velocity, V similar to 0.27 ms(-1), in qualitative agreement with Bohm-gyro-Bohm predictions are inferred in pellet fuelled lithized discharges. Radio frequency heated plasmas benefit from cleaner plasmas with edge optimized conditions. Lower hybrid waves penetration and current drive effects are clearly demonstrated at and above ITER densities thanks to a good control of edge parameters obtained by plasma operations with the external poloidal limiter, lithized walls and pellet fuelling. The electron cyclotron (EC) heating system is extensively exploited in FTU for contributing to ITER-relevant issues such as MHD control: sawtooth crash is actively controlled and density limit disruptions are avoided by central and off-axis deposition of 0.3 MW of EC power at 140 GHz. Fourier analysis shows that the density drop and the temperature rise, stimulated by modulated EC power in low collisionality plasmas are synchronous, implying that the heating method is the common cause of both the electron heating and the density drop. Perpendicularly injected electron cyclotron resonance heating is demonstrated to be more efficient than the obliquely injected one, reducing the minimum electric field required at breakdown by a factor of 3. Theoretical activity further develops the model to interpret high-frequency fishbones on FTU and other experiments as well as to characterize beta-induced Alfven eigenmodes induced by magnetic islands in ohmic discharges. The theoretical framework of the general fishbone-like dispersion relation is used for implementing an extended version of the HMGC hybrid MHD gyrokinetic code. The upgraded version of HMGC will be able to handle fully compressible non-linear gyrokinetic equations and 3D MHD
    corecore