35 research outputs found

    Long-Term Neurobehavioral and Quality of Life Outcomes of Critically Ill Children after Glycemic Control

    Get PDF
    © 2019 Elsevier Inc. Objectives: To investigate adaptive skills, behavior, and quality health-related quality of life in children from 32 centers enrolling in the Heart And Lung Failure-Pediatric INsulin Titration randomized controlled trial. Study design: This prospective longitudinal cohort study compared the effect of 2 tight glycemic control ranges (lower target, 80-100 mg/dL vs higher target, 150-180 mg/dL) 1-year neurobehavioral and health-related quality of life outcomes. Subjects had confirmed hyperglycemia and cardiac and/or respiratory failure. Patients aged 2-16 years old enrolled between April 2012 and September 2016 were studied at 1 year after intensive care discharge. The primary outcome, adaptive skills, was assessed using the Vineland Adaptive Behavior Scale. Behavior and health-related quality of life outcomes were assessed as secondary outcomes using the Pediatric Quality of Life and Child Behavior Checklist at baseline and 1-year follow-up. Group differences were evaluated using regression models adjusting for age category, baseline overall performance, and risk of mortality. Results: Of 369 eligible children, 358 survived after hospital discharge and 214 (60%) completed follow-up. One-year Vineland Adaptive Behavior Scale-II composite scores were not different (mean ± SD, 79.9 ± 25.5 vs 79.4 ± 26.9, lower vs higher target; P =.20). Improvement in Pediatric Quality of Life total health from baseline was greater in the higher target group (adjusted mean difference, 8.2; 95% CI, 1.1-15.3; P =.02). Conclusions: One-year adaptive behavior in critically ill children with lower vs higher target glycemic control did not differ. The higher target group demonstrated improvement from baseline in overall health. This study affirms the lack of benefit of lower glucose targeting. Trial registration: ClinicalTrials.gov: NCT01565941

    Tumor necrosis factor-α-mediated threonine 435 phosphorylation of p65 nuclear factor-κB subunit in endothelial cells induces vasogenic edema and neutrophil infiltration in the rat piriform cortex following status epilepticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Status epilepticus (SE) induces severe vasogenic edema in the piriform cortex (PC) accompanied by neuronal and astroglial damages. To elucidate the mechanism of SE-induced vasogenic edema, we investigated the roles of tumor necrosis factor (TNF)-α in blood-brain barrier (BBB) disruption during vasogenic edema and its related events in rat epilepsy models provoked by pilocarpine-induced SE.</p> <p>Methods</p> <p>SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline-, and soluble TNF p55 receptor (sTNFp55R) prior to SE induction. Thereafter, we performed Fluoro-Jade B staining and immunohistochemical studies for TNF-α and NF-κB subunits.</p> <p>Results</p> <p>Following SE, most activated microglia showed strong TNF-α immunoreactivity. In addition, TNF p75 receptor expression was detected in endothelial cells as well as astrocytes. In addition, only p65-Thr435 phosphorylation was increased in endothelial cells accompanied by SMI-71 expression (an endothelial barrier antigen). Neutralization of TNF-α by soluble TNF p55 receptor (sTNFp55R) infusion attenuated SE-induced vasogenic edema and neuronal damages via inhibition of p65-Thr435 phosphorylation in endothelial cells. Furthermore, sTNFp55R infusion reduced SE-induced neutrophil infiltration in the PC.</p> <p>Conclusion</p> <p>These findings suggest that impairments of endothelial cell functions via TNF-α-mediated p65-Thr 485 NF-κB phosphorylation may be involved in SE-induced vasogenic edema. Subsequently, vasogenic edema results in extensive neutrophil infiltration and neuronal-astroglial loss.</p

    Changes in Distribution of Severe Neurologic Involvement in US Pediatric Inpatients With COVID-19 or Multisystem Inflammatory Syndrome in Children in 2021 vs 2020

    Get PDF
    Importance: In 2020 during the COVID-19 pandemic, neurologic involvement was common in children and adolescents hospitalized in the United States for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related complications. Objective: To provide an update on the spectrum of SARS-CoV-2-related neurologic involvement among children and adolescents in 2021. Design, Setting, and Participants: Case series investigation of patients reported to public health surveillance hospitalized with SARS-CoV-2-related illness between December 15, 2020, and December 31, 2021, in 55 US hospitals in 31 states with follow-up at hospital discharge. A total of 2253 patients were enrolled during the investigation period. Patients suspected of having multisystem inflammatory syndrome in children (MIS-C) who did not meet criteria (n = 85) were excluded. Patients (<21 years) with positive SARS-CoV-2 test results (reverse transcriptase-polymerase chain reaction and/or antibody) meeting criteria for MIS-C or acute COVID-19 were included in the analysis. Exposure: SARS-CoV-2 infection. Main Outcomes and Measures: Patients with neurologic involvement had acute neurologic signs, symptoms, or diseases on presentation or during hospitalization. Life-threatening neurologic involvement was adjudicated by experts based on clinical and/or neuroradiological features. Type and severity of neurologic involvement, laboratory and imaging data, vaccination status, and hospital discharge outcomes (death or survival with new neurologic deficits). Results: Of 2168 patients included (58% male; median age, 10.3 years), 1435 (66%) met criteria for MIS-C, and 476 (22%) had documented neurologic involvement. Patients with neurologic involvement vs without were older (median age, 12 vs 10 years) and more frequently had underlying neurologic disorders (107 of 476 [22%] vs 240 of 1692 [14%]). Among those with neurologic involvement, 42 (9%) developed acute SARS-CoV-2-related life-threatening conditions, including central nervous system infection/demyelination (n = 23; 15 with possible/confirmed encephalitis, 6 meningitis, 1 transverse myelitis, 1 nonhemorrhagic leukoencephalopathy), stroke (n = 11), severe encephalopathy (n = 5), acute fulminant cerebral edema (n = 2), and Guillain-Barré syndrome (n = 1). Ten of 42 (24%) survived with new neurologic deficits at discharge and 8 (19%) died. Among patients with life-threatening neurologic conditions, 15 of 16 vaccine-eligible patients (94%) were unvaccinated. Conclusions and Relevance: SARS-CoV-2-related neurologic involvement persisted in US children and adolescents hospitalized for COVID-19 or MIS-C in 2021 and was again mostly transient. Central nervous system infection/demyelination accounted for a higher proportion of life-threatening conditions, and most vaccine-eligible patients were unvaccinated. COVID-19 vaccination may prevent some SARS-CoV-2-related neurologic complications and merits further study

    Creating a Parallel Version of VisIt for Microsoft Windows

    No full text
    VisIt is a popular, free interactive parallel visualization and analysis tool for scientific data. Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images or movies for presentations. VisIt was designed from the ground up to work on many scales of computers from modest desktops up to massively parallel clusters. VisIt is comprised of a set of cooperating programs. All programs can be run locally or in client/server mode in which some run locally and some run remotely on compute clusters. The VisIt program most able to harness today's computing power is the VisIt compute engine. The compute engine is responsible for reading simulation data from disk, processing it, and sending results or images back to the VisIt viewer program. In a parallel environment, the compute engine runs several processes, coordinating using the Message Passing Interface (MPI) library. Each MPI process reads some subset of the scientific data and filters the data in various ways to create useful visualizations. By using MPI, VisIt has been able to scale well into the thousands of processors on large computers such as dawn and graph at LLNL. The advent of multicore CPU's has made parallelism the 'new' way to achieve increasing performance. With today's computers having at least 2 cores and in many cases up to 8 and beyond, it is more important than ever to deploy parallel software that can use that computing power not only on clusters but also on the desktop. We have created a parallel version of VisIt for Windows that uses Microsoft's MPI implementation (MSMPI) to process data in parallel on the Windows desktop as well as on a Windows HPC cluster running Microsoft Windows Server 2008. Initial desktop parallel support for Windows was deployed in VisIt 2.4.0. Windows HPC cluster support has been completed and will appear in the VisIt 2.5.0 release. We plan to continue supporting parallel VisIt on Windows so our users will be able to take full advantage of their multicore resources

    Anesthesia in Children: Perspectives From Nonsurgical Pediatric Specialists

    No full text
    The Pediatric Anesthesia NeuroDevelopment Assessment (PANDA) study investigates the potential neurotoxicity of anesthetics in the pediatric population. At a recent symposium, a panel of nonsurgical physicians from the disciplines of radiology, neurology, cardiology, and critical care discussed the role anesthesia plays in their respective practices. To execute diagnostic studies and/or therapeutic interventions in each of these disciplines, general anesthesia is oftentimes required for pediatric patients. Given recent publications in the literature suggesting the potential for neurotoxicity following anesthesia in pediatric patients, physicians, parents, and other stakeholders are now challenged to continue to balance safety with efficacy in caring for children. This paper summarizes the panelist presentations and the ensuing discussion at the 2014 PANDA symposium
    corecore