182 research outputs found

    Design and assessment of a reconfigurable behavioral assistive robot: a pilot study

    Get PDF
    IntroductionFor patients with functional motor disorders of the lower limbs due to brain damage or accidental injury, restoring the ability to stand and walk plays an important role in clinical rehabilitation. Lower limb exoskeleton robots generally require patients to convert themselves to a standing position for use, while being a wearable device with limited movement distance.MethodsThis paper proposes a reconfigurable behavioral assistive robot that integrates the functions of an exoskeleton robot and an assistive standing wheelchair through a novel mechanism. The new mechanism is based on a four-bar linkage, and through simple and stable conformal transformations, the robot can switch between exoskeleton state, sit-to-stand support state, and wheelchair state. This enables the robot to achieve the functions of assisted walking, assisted standing up, supported standing and wheelchair mobility, respectively, thereby meeting the daily activity needs of sit-to-stand transitions and gait training. The configuration transformation module controls seamless switching between different configurations through an industrial computer. Experimental protocols have been developed for wearable testing of robotic prototypes not only for healthy subjects but also for simulated hemiplegic patients.ResultsThe experimental results indicate that the gait tracking effect during robot-assisted walking is satisfactory, and there are no sudden speed changes during the assisted standing up process, providing smooth support to the wearer. Meanwhile, the activation of the main force-generating muscles of the legs and the plantar pressure decreases significantly in healthy subjects and simulated hemiplegic patients wearing the robot for assisted walking and assisted standing-up compared to the situation when the robot is not worn.DiscussionThese experimental findings demonstrate that the reconfigurable behavioral assistive robot prototype of this study is effective, reducing the muscular burden on the wearer during walking and standing up, and provide effective support for the subject's body. The experimental results objectively and comprehensively showcase the effectiveness and potential of the reconfigurable behavioral assistive robot in the realms of behavioral assistance and rehabilitation training

    Derivation and elimination of uremic toxins from kidney-gut axis

    Get PDF
    Uremic toxins are chemicals, organic or inorganic, that accumulate in the body fluids of individuals with acute or chronic kidney disease and impaired renal function. More than 130 uremic solutions are included in the most comprehensive reviews to date by the European Uremic Toxins Work Group, and novel investigations are ongoing to increase this number. Although approaches to remove uremic toxins have emerged, recalcitrant toxins that injure the human body remain a difficult problem. Herein, we review the derivation and elimination of uremic toxins, outline kidney–gut axis function and relative toxin removal methods, and elucidate promising approaches to effectively remove toxins

    The Lung Function Impairment in Non-Atopic Patients With Chronic Rhinosinusitis and Its Correlation Analysis

    Get PDF
    Objectives Chronic rhinosinusitis (CRS) is common disease in otorhinolaryngology and will lead to lower airway abnormality. However, the only lung function in CRS patients and associated factors have not been much studied. Methods One hundred patients with CRS with nasal polyps (CRSwNP group), 40 patients with CRS without nasal polyps (CRSsNP group), and 100 patients without CRS were enrolled. The difference in lung function was compared. Meanwhile, CRSwNP and CRSsNP group were required to undergo a bronchial provocation or dilation test. Additionally, subjective and objective outcomes were measured by the visual analogue scale (VAS), 20-item Sino-Nasal Outcome Test (SNOT-20), Lund-Mackay score, Lund-Kennedy endoscopic score. The correlation and regression methods were used to analyze the relationship between their lung function and the above parameters. Results The forced expiratory volume in 1 second (FEV1) and forced expiratory flow between 25% and 75% of forced vital capacity (FEF25-75) of CRSwNP group were significantly lower than other groups (P<0.05). On peak expiratory flow, there was no difference between three groups. In CRSwNP group, FEV1 was negatively correlated with peripheral blood eosinophil count (PBEC) and duration of disease (r=–0.348, P=0.013 and r=–0.344, P=0.014, respectively), FEF25-75 negatively with VAS, SNOT-20 (r=–0.490, P=0.028 and r=–0.478, P=0.033, respectively) in CRSsNP group. The incidence of positive bronchial provocation and dilation test was lower in CRSwNP group (10% and 0%, respectively), with both 0% in CRSsNP group. The multiple linear regression analysis indicated that change ratio of FEV1 before and after bronchial provocation or dilation test were correlated with PBEC in CRSwNP group (β=0.403, P=0.006). Conclusion CRS leading to impaired maximum ventilation and small airway is associated with the existence of nasal polyp. Lung function impairments can be reflected by PBEC, duration, VAS, and SNOT-20. In CRSwNP patients, PBEC is independent predictor of FEV1 change ratio

    Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: potential advantage of cellular transient memory function

    Get PDF
    Background: Peripheral nerve injury (PNI) is a worldwide issue associated with severe social and economic burden. Autologous nerve grafting, the gold standard treatment for peripheral nerve defects, still has a number of technical limitations. Tissue engineering technology is a novel therapeutic strategy, and mesenchymal stromal cells (MSCs) are promising seed cells for nerve tissue engineering. However, the efficiency of traditional methods for inducing the differentiation of MSCs to Schwann cell-like cells (SCLCs) remains unsatisfactory. Methods: Here, we propose an intermittent induction method with alternate use of complete and incomplete induction medium to induce differentiation of adipose-derived stem cells (ASCs) to SCLCs. The time dependence of traditional induction methods and the efficiency of the intermittent induction method and traditional induction methods were evaluated and compared using immunocytochemistry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and co-culture with the dorsal root ganglion (DRG) in vitro. Cell transplantation was used to compare the effects of the traditional induction method and the intermittent induction method in repairing sciatic nerve defects in vivo. Results: The results of the present study indicated that the intermittent induction method is more efficient than traditional methods for inducing ASCs to differentiate into SCLCs. In addition, SCLCs induced by this method were closer to mature myelinating Schwann cells and were capable of secreting neurotrophins and promoting DRG axon regeneration in vitro. Furthermore, SCLCs induced by the intermittent induction method could repair sciatic nerve defects in rats by cell transplantation in vivo more effectively than those produced by traditional methods. Conclusion: Intermittent induction represents a novel strategy for obtaining seed cells for use in nerve tissue engineering
    • …
    corecore