31 research outputs found

    Propranolol inhibits the proliferation, migration and tube formation of hemangioma cells through HIF-1α dependent mechanisms

    No full text
    The aim of this study was to investigate the mechanism of propranolol on the regression of hemangiomas. Propranolol-treated hemangioma tissues were collected and the expression of hypoxia inducible factor-1α (HIF-1α) was examined. We also established HIF-1α overexpression and knockdown hemangioma cells, and determined the effects of HIF-1α on the hemangioma cells proliferation, apoptosis, migration and tube formation. Significantly increased HIF-1α level was found in the hemangioma tissues compared to that in normal vascular tissues, whereas propranolol treatment decreased the HIF-1α level in hemangioma tissues in a time- and dose-dependent manner. Moreover, propranolol treatment significantly decreased cell proliferation, migration and tube formation as well as promoted cell apoptosis in HIF-1α overexpression and knockdown hemangioma cells. Propranolol suppressed the cells proliferation, migration and tube formation of hemangioma cells through HIF-1α dependent mechanisms. HIF-1α could serve as a novel target in the treatment of hemangiomas

    An Ultrahigh-energy γ\gamma-ray Bubble Powered by a Super PeVatron

    No full text
    International audienceWe report the detection of a γ\gamma-ray bubble spanning at least 100deg2\rm deg^2 in ultra high energy (UHE) up to a few PeV in the direction of the star-forming region Cygnus X, implying the presence Super PeVatron(s) accelerating protons to at least 10 PeV. A log-parabola form with the photon index Γ(E)=(2.71±0.02)+(0.11±0.02)×log10(E/10 TeV)\Gamma (E) = (2.71 \pm 0.02) + (0.11 \pm 0.02) \times \log_{10} (E/10 \ {\rm TeV}) is found fitting the gamma-ray energy spectrum of the bubble well. UHE sources, `hot spots' correlated with very massive molecular clouds, and a quasi-spherical amorphous γ\gamma-ray emitter with a sharp central brightening are observed in the bubble. In the core of 0.5\sim 0.5^{\circ}, spatially associating with a region containing massive OB association (Cygnus OB2) and a microquasar (Cygnus X-3), as well as previously reported multi-TeV sources, an enhanced concentration of UHE γ\gamma-rays are observed with 2 photons at energies above 1 PeV. The general feature of the bubble, the morphology and the energy spectrum, are reasonably reproduced by the assumption of a particle accelerator in the core, continuously injecting protons into the ambient medium

    An Ultrahigh-energy γ\gamma-ray Bubble Powered by a Super PeVatron

    No full text
    International audienceWe report the detection of a γ\gamma-ray bubble spanning at least 100deg2\rm deg^2 in ultra high energy (UHE) up to a few PeV in the direction of the star-forming region Cygnus X, implying the presence Super PeVatron(s) accelerating protons to at least 10 PeV. A log-parabola form with the photon index Γ(E)=(2.71±0.02)+(0.11±0.02)×log10(E/10 TeV)\Gamma (E) = (2.71 \pm 0.02) + (0.11 \pm 0.02) \times \log_{10} (E/10 \ {\rm TeV}) is found fitting the gamma-ray energy spectrum of the bubble well. UHE sources, `hot spots' correlated with very massive molecular clouds, and a quasi-spherical amorphous γ\gamma-ray emitter with a sharp central brightening are observed in the bubble. In the core of 0.5\sim 0.5^{\circ}, spatially associating with a region containing massive OB association (Cygnus OB2) and a microquasar (Cygnus X-3), as well as previously reported multi-TeV sources, an enhanced concentration of UHE γ\gamma-rays are observed with 2 photons at energies above 1 PeV. The general feature of the bubble, the morphology and the energy spectrum, are reasonably reproduced by the assumption of a particle accelerator in the core, continuously injecting protons into the ambient medium
    corecore