2,144 research outputs found

    An Adventure in Topological Phase Transitions in 3 + 1-D: Non-abelian Deconfined Quantum Criticalities and a Possible Duality

    Full text link
    Continuous quantum phase transitions that are beyond the conventional paradigm of fluctuations of a symmetry breaking order parameter are challenging for theory. These phase transitions often involve emergent deconfined gauge fields at the critical points as demonstrated in 2+1-dimensions. Examples include phase transitions in quantum magnetism as well as those between Symmetry Protected Topological phases. In this paper, we present several examples of Deconfined Quantum Critical Points (DQCP) between Symmetry Protected Topological phases in 3+1-D for both bosonic and fermionic systems. Some of the critical theories can be formulated as non-abelian gauge theories either in their Infra-Red free regime, or in the conformal window when they flow to the Banks-Zaks fixed points. We explicitly demonstrate several interesting quantum critical phenomena. We describe situations in which the same phase transition allows for multiple universality classes controlled by distinct fixed points. We exhibit the possibility - which we dub "unnecessary quantum critical points" - of stable generic continuous phase transitions within the same phase. We present examples of interaction driven band-theory- forbidden continuous phase transitions between two distinct band insulators. The understanding we develop leads us to suggest an interesting possible 3+1-D field theory duality between SU(2) gauge theory coupled to one massless adjoint Dirac fermion and the theory of a single massless Dirac fermion augmented by a decoupled topological field theory.Comment: 83 pages, 10 figure

    Delta-33 medium mass modification and pion spectra

    Full text link
    We study the pi+- spectra obtained in 2,4,6,8 A GeV Au-Au collisions within the thermal model. We find that the main features of the data can be well described after we include the pions from the decay of the Delta-resonance with medium mass modification.Comment: 6 pages incl. 2 figs and 2 tables, final version in press in the EPJ-A (Hadrons and Nuclei). TITLE slightly change

    Superconductivity near a ferroelectric quantum critical point in ultralow-density Dirac materials

    Full text link
    The experimental observation of superconductivity in doped semimetals and semiconductors, where the Fermi energy is comparable to or smaller than the characteristic phonon frequencies, is not captured by the conventional theory. In this paper, we propose a mechanism for superconductivity in ultralow-density three-dimensional Dirac materials based on the proximity to a ferroelectric quantum critical point. We derive a low-energy theory that takes into account both the strong Coulomb interaction and the direct coupling between the electrons and the soft phonon modes. We show that the Coulomb repulsion is strongly screened by the lattice polarization near the critical point even in the case of vanishing carrier density. Using a renormalization group analysis, we demonstrate that the effective electron-electron interaction is dominantly mediated by the transverse phonon mode. We find that the system generically flows towards strong electron-phonon coupling. Hence, we propose a new mechanism to simultaneously produce an attractive interaction and suppress strong Coulomb repulsion, which does not require retardation. For comparison, we perform same analysis for covalent crystals, where lattice polarization is negligible. We obtain qualitatively similar results, though the screening of the Coulomb repulsion is much weaker. We then apply our results to study superconductivity in the low-density limit. We find strong enhancement of the transition temperature upon approaching the quantum critical point. Finally, we also discuss scenarios to realize a topological pp-wave superconducting state in covalent crystals close to the critical point
    • …
    corecore