8,713 research outputs found

    Influences of e-retailer sponsored virtual community on consumer loyalty: an exploration of underlying mechanisms

    Get PDF
    An e-retailer sponsored virtual community (ESVC), as the backyard of an e-commerce website, provides consumers with an online platform to play with each other. Different from transactional e-commerce platform, ESVC assembles consumers together to fulfil their social needs. In recent years, with the popular of Web 2.0 information and communication technologies (ICTs), e-retailers also start to integrate social media within ESVC. This greatly increases consumers' online community participation, as social media facilitate information sharing and interactions among community members with a social flavour. Moreover, social media provide a variety of IT artefacts to visualize the interactions between consumers and e-retailer, which reshapes the relationship between e-retailer and customer as a triad model. However, in this new context, the influences of ESVC characteristics and IT artefacts on e-retailer- customer relationship were not well investigated. Some researchers have made effort to open the "black box" between ESVC with social media investment and customer loyalty, but still lack theoretical foundations. This research explores the underlying mechanisms from a new perspective, and proposes a theoretical framework based on reciprocal theory

    Evolutionary Subnetworks in Complex Systems

    Full text link
    Links in a practical network may have different functions, which makes the original network a combination of some functional subnetworks. Here, by a model of coupled oscillators, we investigate how such functional subnetworks are evolved and developed according to the network structure and dynamics. In particular, we study the case of evolutionary clustered networks in which the function of each link (either attractive or repulsive coupling) is updated by the local dynamics. It is found that, during the process of system evolution, the network is gradually stabilized into a particular form in which the attractive (repulsive) subnetwork consists only the intralinks (interlinks). Based on the properties of subnetwork evolution, we also propose a new algorithm for network partition which is distinguished by the convenient operation and fast computing speed.Comment: 4 pages, 4 figure

    Small‐for‐size liver transplanted into larger recipient: A model of hepatic regeneration

    Get PDF
    Orthotopic liver transplantation was performed in 60 recipient rats weighing 200 to 250 gm. Sixty rats of the same strain were used as liver donors, 30 weighing 100 to 140 gm (small for size) and the other 30 weighing 200 to 250 gm (same size). After 1, 2, 3, 4, 7 and 14 days (n = 5 each) DNA synthesis, nuclear thymidine labeling and mitoses were increased in both the small‐for‐size and same‐size groups, but significantly more in the former. These changes were maximal after 48 to 72 hr, similar to but later than the well‐known regeneration response after partial hepatectomy, which peaks at 24 hr in rats. Indirect indexes of regeneration of the transplanted livers also were measured: plasma or serum ornithine decarboxylase; insulin and glucagon serum levels; estradiol and testosterone serum levels (and their nuclear and cytosolic receptors); and transforming growth factor‐ß, c‐Ha‐ras and c‐jun mRNA expressions. With the small‐for‐size transplantation, these followed the same delayed pattern as the direct regeneration parameters. The small livers gradually increased in size over the course of 1 to 2 wk and achieved a volume equal to that of the liver originally present in the recipient. In contrast, no significant liver weight gain occurred in the transplanted livers from same‐size donors despite the evidence of regeneration by direct indexes, but not by most of the surrogate parameters, including ornithine decarboxylase. (Hepatology 1993;19:210–216). Copyright © 1994 American Association for the Study of Liver Disease

    Split Two-Higgs-Doublet Model and Neutrino Condensation

    Full text link
    We split the two-Higgs-doublet model by assuming very different vevs for the two doublets: the vev is at weak scale (174 GeV) for the doublet \Phi_1 and at neutrino-mass scale (10^{-2} \sim 10^{-3} eV) for the doublet \Phi_2. \Phi_1 is responsible for giving masses to all fermions except neutrinos; while \Phi_2 is responsible for giving neutrino masses through its tiny vev without introducing see-saw mechanism. Among the predicted five physical scalars H, h, A^0 and H^{\pm}, the CP-even scalar h is as light as 10^{-2} \sim 10^{-3}eV while others are at weak scale. We identify h as the cosmic dark energy field and the other CP-even scalar H as the Standard Model Higgs boson; while the CP-odd A^0 and the charged H^{\pm} are the exotic scalars to be discovered at future colliders. Also we demonstrate a possible dynamical origin for the doublet \Phi_2 from neutrino condensation caused by some unknown dynamics.Comment: version in Europhys. Lett. (discussions added
    corecore