43 research outputs found

    State-space Geometry, Statistical Fluctuations and Black Holes in String Theory

    Full text link
    We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a new perspective of black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic state-space geometric meaning of the statistical fluctuations, local and global stability conditions and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, \textit{viz.}, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory. Keywords: Intrinsic Geometry; String Theory; Physics of black holes; Classical black holes; Quantum aspects of black holes, evaporation, thermodynamics; Higher-dimensional black holes, black strings, and related objects; Statistical Fluctuation; Flow Instability. PACS: 02.40.Ky; 11.25.-w; 04.70.-s; 04.70.Bw; 04.70.Dy; 04.50.Gh; 5.40.-a; 47.29.KyComment: 28 pages. arXiv admin note: substantial text overlap with arXiv:1102.239

    Geometric Design and Stability of Power Networks

    Full text link
    From the perspective of the network theory, the present work illustrates how the parametric intrinsic geometric description exhibits an exact set of pair correction functions and global correlation volume with and without the inclusion of the imaginary power flow. The Gaussian fluctuations about the equilibrium basis accomplish a well-defined, non-degenerate, curved regular intrinsic Riemannian surfaces for the purely real and the purely imaginary power flows and their linear combinations. An explicit computation demonstrates that the underlying real and imaginary power correlations involve ordinary summations of the power factors, with and without their joint effects. Novel aspect of the intrinsic geometry constitutes a stable design for the power systems.Comment: 23 pages, 11 figures, Keywords: Correlation; Geometry; Power Flow; Network; Stabilit

    Thermodynamic Geometry and Topological Einstein-Yang-Mills Black Holes

    Full text link
    From the perspective of the statistical fluctuation theory, we explore the role of the thermodynamic geometries and vacuum (in)stability properties for the topological Einstein-Yang-Mills black holes. In this paper, from the perspective of the state-space surface and chemical Wienhold surface, we provide the criteria for the local and global statistical stability of an ensemble of topological Einstein-Yang-Mills black holes in arbitrary spacetime dimensions D≥5D\ge 5. Finally, as per the formulations of the thermodynamic geometry, we offer a parametric account of the statistical consequences in both the local and global fluctuation regimes of the topological Einstein-Yang-Mills black holes.Comment: 39 pages, 16 figures. Keywords: Thermodynamic Geometry; Topological Einstein-Yang-Mills Black Holes; Higher Dimensional Gravity; Cosmological Constant. Two typos correcte

    State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory

    Get PDF
    We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory
    corecore