8 research outputs found

    BAM15, a Mitochondrial Uncoupling Agent, Attenuates Inflammation in the LPS Injection Mouse Model: An Adjunctive Anti-Inflammation on Macrophages and Hepatocytes

    Get PDF
    Controlof immune responses through the immunometabolism interference is interesting for sepsis treatment. Then, expression of immunometabolism-associated genes and BAM15, a mitochondrial uncoupling agent, was explored in a proinflammatory model using lipopolysaccharide (LPS) injection. Accordingly, the decreased expression of mitochondrial uncoupling proteins was demonstrated by transcriptomic analysis on metabolism-associated genes in macrophages (RAW246.7) and by polymerase chain reaction in LPS-stimulated RAW246.7 and hepatocytes (Hepa 1–6). Pretreatment with BAM15 at 24 h prior to LPS in macrophages attenuated supernatant inflammatory cytokines (IL-6, TNF-α, and IL-10), downregulated genes of proinflammatory M1 polarization (iNOS and IL-1β), upregulated anti-inflammatory M2 polarization (Arg1 and FIZZ), and decreased cell energy status (extracellular flux analysis and ATP production). Likewise, BAM15 decreased expression of proinflammatory genes (IL-6, TNF-α, IL-10, and iNOS) and reduced cell energy in hepatocytes. In LPS-administered mice, BAM15 attenuated serum cytokines, organ injury (liver enzymes and serum creatinine), and tissue cytokines (livers and kidneys), in part, through the enhanced phosphorylated αAMPK, a sensor of ATP depletion with anti-inflammatory property, in the liver, and reduced inflammatory monocytes/macrophages (Ly6C +ve, CD11b +ve) in the liver as detected by Western blot and flow cytometry, respectively. In conclusion, a proof of concept for inflammation attenuation of BAM15 through metabolic interference-induced anti-inflammation on macrophages and hepatocytes was demonstrated as a new strategy of anti-inflammation in sepsis

    Acute Kidney Injury Induced Lupus Exacerbation Through the Enhanced Neutrophil Extracellular Traps (and Apoptosis) in Fcgr2b Deficient Lupus Mice With Renal Ischemia Reperfusion Injury.

    Get PDF
    Renal ischemia is the most common cause of acute kidney injury (AKI) that might be exacerbate lupus activity through neutrophil extracellular traps (NETs) and apoptosis. Here, the renal ischemia reperfusion injury (I/R) was performed in Fc gamma receptor 2b deficient (Fcgr2b-/-) lupus mice and the in vitro experiments. At 24 h post-renal I/R injury, NETs in peripheral blood neutrophils and in kidneys were detected using myeloperoxidase (MPO), neutrophil elastase (NE) and citrullinated histone H3 (CitH3), as well as kidney apoptosis (activating caspase-3), which were prominent in Fcgr2b-/- mice more compared to wild-type (WT). After 120 h renal-I/R injury, renal NETs (using MPO and NE) were non-detectable, whereas glomerular immunoglobulin (Ig) deposition and serum anti-dsDNA were increased in Fcgr2b-/- mice. These results imply that renal NETs at 24 h post-renal I/R exacerbated the lupus nephritis at 120 h post-renal I/R injury in Fcgr2b-/- lupus mice. Furthermore, a Syk inhibitor attenuated NETs, that activated by phorbol myristate acetate (PMA; a NETs activator) or lipopolysaccharide (LPS; a potent inflammatory stimulator), more prominently in Fcgr2b-/- neutrophils than the WT cells as determined by dsDNA, PAD4 and MPO. In addition, the inhibitors against Syk and PAD4 attenuated lupus characteristics (serum creatinine, proteinuria, and anti-dsDNA) in Fcgr2b-/- mice at 120 h post-renal I/R injury. In conclusion, renal I/R in Fcgr2b-/- mice induced lupus exacerbation at 120 h post-I/R injury partly because Syk-enhanced renal NETs led to apoptosis-induced anti-dsDNA, which was attenuated by a Syk inhibitor

    Neutrophil Extracellular Traps in Severe SARS-CoV-2 Infection: A Possible Impact of LPS and (1→3)-β-D-glucan in Blood from Gut Translocation.

    Get PDF
    Due to limited data on the link between gut barrier defects (leaky gut) and neutrophil extracellular traps (NETs) in coronavirus disease 2019 (COVID-19), blood samples of COVID-19 cases-mild (upper respiratory tract symptoms without pneumonia; n = 27), moderate (pneumonia without hypoxia; n = 28), and severe (pneumonia with hypoxia; n = 20)-versus healthy control (n = 15) were evaluated, together with in vitro experiments. Accordingly, neutrophil counts, serum cytokines (IL-6 and IL-8), lipopolysaccharide (LPS), bacteria-free DNA, and NETs parameters (fluorescent-stained nuclear morphology, dsDNA, neutrophil elastase, histone-DNA complex, and myeloperoxidase-DNA complex) were found to differentiate COVID-19 severity, whereas serum (1→3)-β-D-glucan (BG) was different between the control and COVID-19 cases. Despite non-detectable bacteria-free DNA in the blood of healthy volunteers, using blood bacteriome analysis, proteobacterial DNA was similarly predominant in both control and COVID-19 cases (all severities). In parallel, only COVID-19 samples from moderate and severe cases, but not mild cases, were activated in vitro NETs, as determined by supernatant dsDNA, Peptidyl Arginine Deiminase 4, and nuclear morphology. With neutrophil experiments, LPS plus BG (LPS + BG) more prominently induced NETs, cytokines, NFκB, and reactive oxygen species, when compared with the activation by each molecule alone. In conclusion, pathogen molecules (LPS and BG) from gut translocation along with neutrophilia and cytokinemia in COVID-19-activated, NETs-induced hyperinflammation

    Prominent Indomethacin-Induced Enteropathy in Fcgriib Defi-cient lupus Mice: An Impact of Macrophage Responses and Immune Deposition in Gut

    No full text
    A high dose of NSAIDs, a common analgesic, might induce lupus activity through several NSAIDs adverse effects including gastrointestinal permeability defect (gut leakage) and endotoxemia. Indomethacin (25 mg/day) was orally administered for 7 days in 24-wk-old Fc gamma receptor IIb deficient (FcgRIIb-/-) mice, an asymptomatic lupus model (increased anti-dsDNA without lupus nephritis), and age-matched wild-type (WT) mice. Severity of indomethacin-induced enteropathy in FcgRIIb-/- mice was higher than WT mice as demonstrated by survival analysis, intestinal injury (histology, immune-deposition, and intestinal cytokines), gut leakage (FITC-dextran assay and endotoxemia), serum cytokines, and lupus characteristics (anti-dsDNA, renal injury, and proteinuria). Prominent responses of FcgRIIb-/- macrophages toward lipopolysaccharide (LPS) compared to WT cells due to the expression of only activating-FcgRs without inhibitory-FcgRIIb were demonstrated. Extracellular flux analysis indicated the greater mitochondria activity (increased respiratory capacity and respiratory reserve) in FcgRIIb-/- macrophages with a concordant decrease in glycolysis activity when compared to WT cells. In conclusion, gut leakage-induced endotoxemia is more severe in indomethacin-administered FcgRIIb-/- mice than WT, possibly due to the enhanced indomethacin toxicity from lupus-induced intestinal immune-deposition. Due to a lack of inhibitory-FcgRIIb expression, mitochondrial function, and cytokine production of FcgRIIb-/- macrophages were more prominent than WT cells. Hence, lupus disease-activation from NSAIDs-enteropathy-induced gut leakage is possible

    Comparison of the Single Cell Immune Landscape between Subjects with High <i>Mycobacterium tuberculosis</i> Bacillary Loads during Active Pulmonary Tuberculosis and Household Members with Latent Tuberculosis Infection

    No full text
    It is unclear how the immune system controls the transition from latent tuberculosis (TB) infection (LTBI) to active pulmonary infection (PTB). Here, we applied mass spectrometry cytometry time-of-flight (CyTOF) analysis of peripheral blood mononuclear cells to compare the immunological landscapes in patients with high tuberculous bacillary load PTB infections and LTBI. A total of 32 subjects (PTB [n = 12], LTBI [n = 17], healthy volunteers [n = 3]) were included. Participants with active PTBs were phlebotomized before administering antituberculosis treatment, whereas participants with LTBI progressed to PTB at the time of household screening. In the present study, CyTOF analysis identified significantly higher percentages of mucosal-associated invariant natural killer T (MAIT NKT) cells in subjects with LTBI than in those with active PTB and healthy controls. Moreover, 6 of 17 (35%) subjects with LTBI progressed to active PTB (LTBI progression) and had higher proportions of MAIT NKT cells and early NKT cells than those without progression (LTBI non-progression). Subjects with LTBI progression also showed a tendency toward low B cell levels relative to other subject groups. In conclusion, MAIT NKT cells were substantially more prevalent in subjects with LTBI, particularly those with progression to active PTB

    Prominent Indomethacin-Induced Enteropathy in Fcgriib <i>Defi-cient lupus</i> Mice: An Impact of Macrophage Responses and Immune Deposition in Gut

    No full text
    A high dose of NSAIDs, a common analgesic, might induce lupus activity through several NSAIDs adverse effects including gastrointestinal permeability defect (gut leakage) and endotoxemia. Indomethacin (25 mg/day) was orally administered for 7 days in 24-wk-old Fc gamma receptor IIb deficient (FcgRIIb-/-) mice, an asymptomatic lupus model (increased anti-dsDNA without lupus nephritis), and age-matched wild-type (WT) mice. Severity of indomethacin-induced enteropathy in FcgRIIb-/- mice was higher than WT mice as demonstrated by survival analysis, intestinal injury (histology, immune-deposition, and intestinal cytokines), gut leakage (FITC-dextran assay and endotoxemia), serum cytokines, and lupus characteristics (anti-dsDNA, renal injury, and proteinuria). Prominent responses of FcgRIIb-/- macrophages toward lipopolysaccharide (LPS) compared to WT cells due to the expression of only activating-FcgRs without inhibitory-FcgRIIb were demonstrated. Extracellular flux analysis indicated the greater mitochondria activity (increased respiratory capacity and respiratory reserve) in FcgRIIb-/- macrophages with a concordant decrease in glycolysis activity when compared to WT cells. In conclusion, gut leakage-induced endotoxemia is more severe in indomethacin-administered FcgRIIb-/- mice than WT, possibly due to the enhanced indomethacin toxicity from lupus-induced intestinal immune-deposition. Due to a lack of inhibitory-FcgRIIb expression, mitochondrial function, and cytokine production of FcgRIIb-/- macrophages were more prominent than WT cells. Hence, lupus disease-activation from NSAIDs-enteropathy-induced gut leakage is possible

    Chlorhexidine Promotes <i>Psl</i> Expression in <i>Pseudomonas aeruginosa</i> That Enhances Cell Aggregation with Preserved Pathogenicity Demonstrates an Adaptation against Antiseptic

    No full text
    Because Pseudomonas aeruginosa is frequently in contact with Chlorhexidine (a regular antiseptic), bacterial adaptations are possible. In comparison with the parent strain, the Chlorhexidine-adapted strain formed smaller colonies with metabolic downregulation (proteomic analysis) with the cross-resistance against colistin (an antibiotic for several antibiotic-resistant bacteria), partly through the modification of L-Ara4N in the lipopolysaccharide at the outer membrane. Chlorhexidine-adapted strain formed dense liquid–solid interface biofilms with enhanced cell aggregation partly due to the Chlorhexidine-induced overexpression of psl (exopolysaccharide-encoded gene) through the LadS/GacSA pathway (c-di-GMP-independence) in 12 h biofilms and maintained the aggregation with SiaD-mediated c-di-GMP dependence in 24 h biofilms as evaluated by polymerase chain reaction (PCR). The addition of Ca2+ in the Chlorhexidine-adapted strain facilitated several Psl-associated genes, indicating an impact of Ca2+ in Psl production. The activation by Chlorhexidine-treated sessile bacteria demonstrated a lower expression of IL-6 and IL-8 on fibroblasts and macrophages than the activation by the parent strain, indicating the less inflammatory reactions from Chlorhexidine-exposed bacteria. However, the 14-day severity of the wounds in mouse caused by Chlorhexidine-treated bacteria versus the parent strain was similar, as indicated by wound diameters and bacterial burdens. In conclusion, Chlorhexidine induced psl over-expression and colistin cross-resistance that might be clinically important

    Uremia-Induced Gut Barrier Defect in 5/6 Nephrectomized Mice Is Worsened by Candida Administration through a Synergy of Uremic Toxin, Lipopolysaccharide, and (1&#10132;3)-&beta;-D-Glucan, but Is Attenuated by Lacticaseibacillus rhamnosus L34

    No full text
    A chronic kidney disease (CKD) causes uremic toxin accumulation and gut dysbiosis, which further induces gut leakage and worsening CKD. Lipopolysaccharide (LPS) of Gram-negative bacteria and (1&#10132;3)-&beta;-D-glucan (BG) of fungi are the two most abundant gut microbial molecules. Due to limited data on the impact of intestinal fungi in CKD mouse models, the influences of gut fungi and Lacticaseibacillus rhamnosus L34 (L34) on CKD were investigated using oral C. albicans-administered 5/6 nephrectomy (5/6Nx) mice. At 16 weeks post-5/6Nx, Candida-5/6Nx mice demonstrated an increase in proteinuria, serum BG, serum cytokines (tumor necrotic factor-&alpha;; TNF-&alpha; and interleukin-6), alanine transaminase (ALT), and level of fecal dysbiosis (Proteobacteria on fecal microbiome) when compared to non-Candida-5/6Nx. However, serum creatinine, renal fibrosis, or gut barrier defect (FITC-dextran assay and endotoxemia) remained comparable between Candida- versus non-Candida-5/6Nx. The probiotics L34 attenuated several parameters in Candida-5/6Nx mice, including fecal dysbiosis (Proteobacteria and Bacteroides), gut leakage (fluorescein isothiocyanate (FITC)-dextran), gut-derived uremic toxin (trimethylamine-N-oxide; TMAO) and indoxyl sulfate; IS), cytokines, and ALT. In vitro, IS combined with LPS with or without BG enhanced the injury on Caco-2 enterocytes (transepithelial electrical resistance and FITC-dextran permeability) and bone marrow-derived macrophages (supernatant cytokines (TNF-&alpha; and interleukin-1 &beta;; IL-1&beta;) and inflammatory genes (TNF-&alpha;, IL-1&beta;, aryl hydrocarbon receptor, and nuclear factor-&kappa;B)), compared with non-IS activation. These injuries were attenuated by the probiotics condition media. In conclusion, Candida administration worsens kidney damage in 5/6Nx mice through systemic inflammation, partly from gut dysbiosis-induced uremic toxins, which were attenuated by the probiotics. The additive effects on cell injury from uremic toxin (IS) and microbial molecules (LPS and BG) on enterocytes and macrophages might be an important underlying mechanism
    corecore