27 research outputs found
Mutations with pathogenic potential in proteins located in or at the composite junctions of the intercalated disk connecting mammalian cardiomyocytes: a reference thesaurus for arrhythmogenic cardiomyopathies and for Naxos and Carvajal diseases
In the past decade, an avalanche of findings and reports has correlated arrhythmogenic ventricular cardiomyopathies (ARVC) and Naxos and Carvajal diseases with certain mutations in protein constituents of the special junctions connecting the polar regions (intercalated disks) of mature mammalian cardiomyocytes. These molecules, apparently together with some specific cytoskeletal proteins, are components of (or interact with) composite junctions. Composite junctions contain the amalgamated fusion products of the molecules that, in other cell types and tissues, occur in distinct separate junctions, i.e. desmosomes and adherens junctions. As the pertinent literature is still in an expanding phase and is obviously becoming important for various groups of researchers in basic cell and molecular biology, developmental biology, histology, physiology, cardiology, pathology and genetics, the relevant references so far recognized have been collected and are presented here in the following order: desmocollin-2 (Dsc2, DSC2), desmoglein-2 (Dsg2, DSG2), desmoplakin (DP, DSP), plakoglobin (PG, JUP), plakophilin-2 (Pkp2, PKP2) and some non-desmosomal proteins such as transmembrane protein 43 (TMEM43), ryanodine receptor 2 (RYR2), desmin, lamins A and C, striatin, titin and transforming growth factor-Ξ²3 (TGFΞ²3), followed by a collection of animal models and of reviews, commentaries, collections and comparative studies
Photoluminescence and optical studies of photodegradation in nonlinear optical organic chromophores
Photostability measurements have been made on host-guest films containing amorphous polycarbonate and an organic chromophore with a high 2nd order nonlinear optical figure of merit. We find that the rate of photodegradation strongly depends on the oxygen partial pressure. At very low oxygen partial pressures (1.4Γ10-5 bar) the average number of photons required to photodegrade a chromophore is as high as 1Γ10 9 at 655 nm. Encapsulation leads to an initial rapid decrease in the photodegradation rate due to the trapped oxygen and a gradual photodegradation where 2Γ109 photons are required to photodegrade a chromophore. There is an anomalous increase and then decrease in the photoluminescence intensity during ultraviolet irradiation
A study on evaluation of probable sources of heavy metal pollution in groundwater of Kalpakkam region, South India
This study investigates the heavy metal pollution vulnerability of the groundwater in the coastal aquifers of Kalpakkam region in the state of Tamilnadu, India. Integrated-approach includes pollution evaluation indices, principal component analysis (PCA), and correlation matrix (CM) to evaluate the intensity and source of pollution in groundwater. The data have been used for the calculation of heavy metal pollution index (HPI) and degree of contamination (C d). The mean metal levels in groundwater followed a descending order as: Zn > Ba > Fe > Al > Se > Mn > Cu > Ni > Pb > Cr > Mo > As > Cd > Sb > Be. The concentrations of Fe, Cd, Zn, Se, Ba, Mn, Ni, Pb, and Al in some of the groundwater samples exceed the maximum admissible concentration (MAC). The HPI and C d yield different results despite significant correlations between them. The following elemental associations were obtained from PCA and CM: FeβMnβNiβCrβPbβCdβZnβBeβAl, CuβAs, SbβAs, AlβBa and SeβMo, which could be linked to anthropogenic sources (i.e., processes of tannery and dying industries with some contribution from the landfill leachate and municipal sewage). GIS-based factor score maps suggest that the activities of tannery industries and landfill leachate are pervasive processes in the area. This study has provided the evidence that effluents discharged from the tannery and auxiliary industries and landfill leachate are the main sources of heavy metal pollution in the groundwater. The high metal concentrations observed in the groundwater may have serious public health and potential environmental hazard implications