642 research outputs found

    Charge reversal and surface charge amplification in asymmetric valence restricted primitive model planar electric double layers in the modified Poisson-Boltzmann theory

    Full text link
    The modified Poisson-Boltzmann theory of the restricted primitive model double layer is revisited and recast in a fresh, slightly broader perspective. Derivation of relevant equations follow the techniques utilized in the earlier MPB4 and MPB5 formulations and clarifies the relationship between these. The MPB4, MPB5, and a new formulation of the theory are employed in an analysis of the structure and charge reversal phenomenon in asymmetric 2:1/1:2 valence electrolytes. Furthermore, polarization induced surface charge amplification is studied in 3:1/1:3 systems. The results are compared to the corresponding Monte Carlo simulations. The theories are seen to predict the "exact" simulation data to varying degrees of accuracy ranging from qualitative to almost quantitative. The results from a new version of the theory are found to be of comparable accuracy as the MPB5 results in many situations. However, in some cases involving low electrolyte concentrations, theoretical artifacts in the form of un-physical "shoulders" in the singlet ionic distribution functions are observed.Comment: 15 pages, 13 figure

    An analysis of the fluctuation potential in the modified Poisson-Boltzmann theory for restricted primitive model electrolytes

    Full text link
    An approximate analytical solution to the fluctuation potential problem in the modified Poisson-Boltzmann theory of electrolyte solutions in the restricted primitive model is presented. The solution is valid for all inter-ionic distances, including contact values. The fluctuation potential solution is implemented in the theory to describe the structure of the electrolyte in terms of the radial distribution functions, and to calculate some aspects of thermodynamics, viz., configurational reduced energies, and osmotic coefficients. The calculations have been made for symmetric valence 1:1 systems at the physical parameters of ionic diameter 4.25×10104.25 \times 10^{-10} m, relative permittivity 78.5, absolute temperature 298 K, and molar concentrations 0.1038, 0.425, 1.00, and 1.968. Radial distribution functions are compared with the corresponding results from the symmetric Poisson-Boltzmann, and the conventional and modified Poisson-Boltzmann theories. Comparisons have also been done for the contact values of the radial distributions, reduced configurational energies, and osmotic coefficients as functions of electrolyte concentration. Some Monte Carlo simulation data from the literature are also included in the assessment of the thermodynamic predictions. Results show a very good agreement with the Monte Carlo results and some improvement for osmotic coefficients and radial distribution functions contact values relative to these theories. The reduced energy curve shows excellent agreement with Monte Carlo data for molarities up to 1 mol/dm3^{3}.Comment: 16 pages, 8 figures, 3 table

    On the contact values of the density profiles in an electric double layer using density functional theory

    Full text link
    A recently proposed local second contact value theorem [Henderson D., Boda D., J. Electroanal. Chem., 2005, 582, 16] for the charge profile of an electric double layer is used in conjunction with the existing Monte Carlo data from the literature to assess the contact behavior of the electrode-ion distributions predicted by the density functional theory. The results for the contact values of the co- and counterion distributions and their product are obtained for the symmetric valency, restricted primitive model planar double layer for a range of electrolyte concentrations and temperatures. Overall, the theoretical results satisfy the second contact value theorem reasonably well, the agreement with the simulations being semi-quantitative or better. The product of the co- and counterion contact values as a function of the electrode surface charge density is qualitative with the simulations with increasing deviations at higher concentrations.Comment: 10 pages, 8 figure

    Influence of anisotropic ion shape, asymmetric valency, and electrolyte concentration on structural and thermodynamic properties of an electric double layer

    Full text link
    Grand canonical Monte Carlo simulation results are reported for an electric double layer modelled by a planar charged hard wall, anisotropic shape cations, and spherical anions at different electrolyte concentrations and asymmetric valencies. The cations consist of two tangentially tethered hard spheres of the same diameter, dd. One sphere is charged while the other is neutral. Spherical anions are charged hard spheres of diameter dd. The ion valency asymmetry 1:2 and 2:1 is considered, with the ions being immersed in a solvent mimicked by a continuum dielectric medium at standard temperature. The simulations are carried out for the following electrolyte concentrations: 0.1, 1.0 and 2.0 M. Profiles of the electrode-ion, electrode-neutral sphere singlet distributions, the average orientation of dimers, and the mean electrostatic potential are calculated for a given electrode surface charge, σ\sigma, while the contact electrode potential and the differential capacitance are presented for varying electrode charge. With an increasing electrolyte concentration, the shape of differential capacitance curve changes from that with a minimum surrounded by maxima into that of a distorted single maximum. For a 2:1 electrolyte, the maximum is located at a small negative σ\sigma value while for 1:2, at a small positive value.Comment: 10 pages, 6 figure

    Double layer for hard spheres with an off-center charge

    Full text link
    Simulations for the density and potential profiles of the ions in the planar electrical double layer of a model electrolyte or an ionic liquid are reported. The ions of a real electrolyte or an ionic liquid are usually not spheres; in ionic liquids, the cations are molecular ions. In the past, this asymmetry has been modelled by considering spheres that are asymmetric in size and/or valence (viz., the primitive model) or by dimer cations that are formed by tangentially touching spheres. In this paper we consider spherical ions that are asymmetric in size and mimic the asymmetrical shape through an off-center charge that is located away from the center of the cation spheres, while the anion charge is at the center of anion spheres. The various singlet density and potential profiles are compared to (i) the dimer situation, that is, the constituent spheres of the dimer cation are tangentially tethered, and (ii) the standard primitive model. The results reveal the double layer structure to be substantially impacted especially when the cation is the counterion. As well as being of intrinsic interest, this off-center charge model may be useful for theories that consider spherical models and introduce the off-center charge as a perturbation.Comment: 11 pages, 7 figure

    Thermodynamics of primitive model electrolytes in the symmetric and modified Poisson-Boltzmann theories. A comparative study with Monte Carlo simulations

    Full text link
    Osmotic coefficients, individual and mean activity coefficients of primitive model electrolyte solutions are computed at different molar concentrations using the symmetric Poisson-Boltzmann and modified Poisson-Boltzmann theories. The theoretical results are compared with an extensive series of Monte Carlo simulation data obtained by Abbas et al. [Fluid Phase Equilib., 2007, 260, 233; J. Phys. Chem. B, 2009, 113, 5905]. The agreement between modified Poisson-Boltzmann predictions with the "exact" simulation results is almost quantitative for monovalent salts, while being semi-quantitative or better for higher and multivalent salts. The symmetric Poisson-Boltzmann results, on the other hand, are very good for monovalent systems but tend to deviate at higher concentrations and/or for multi-valent systems. Some recent experimental values for activity coefficients of HCl solution (individual and mean activities) and NaCl solution (mean activity only) have also been compared with the symmetric and modified Poisson-Boltzmann theories, and with the Monte Carlo simulations.Comment: 10 pages, 9 figure

    The primitive model of ionic fluids near its critical point in the Poisson–Boltzmann and modified Poisson–Boltzmann theories

    Get PDF
    The Poisson–Boltzmann (PB) and modified Poisson–Boltzmann (MPB) theories are used to investigate the primitive model of ionic fluids in the low density–large coupling regime where the liquid–vapor transition is situated. The PB and MPB spinodal curves for the restricted primitive model are calculated from the virial route and compared with those from the mean spherical approximation (energy route) and the hybrid hypernetted‐chain/mean spherical approximation (virial route). The effect of unequal ion sizes on the critical point and spinodal curves is also considered.National Sanitation Foundation (NSF) EE.UU. CHE-8907130Fondo Institucional para la Investigación (FIPI) de la Universidad de Puerto RicoComunidad Europea (beca Marie Curie)Dirección General de Investigación Científica y Técnica (DGICYT). España PBgl / 060

    Spontaneous polarisation of the neutral interface for valence asymmetric coulombic systems

    Full text link
    In this paper, we discuss the phenomenon of a spontaneous polarisation of a neutral hard planar interface for valence asymmetric coulombic systems. Within a field theoretical description, we account for the existence of non trivial charge density and electric potential profiles. The analysis of the phenomenon shows that the effect is related to combinatorics in relation with the existence of the two independent species cations and anions. This simple and basic feature is related to the quantum mechanical properties of the system. The theoretical results are compared with numerical simulations data and are shown to be in very good agreement, which a fortiori justifies our physical interpretation.Comment: 12 pages, 11 figure

    On the fluid-fluid phase separation in charged-stabilized colloidal suspensions

    Full text link
    We develop a thermodynamic description of particles held at a fixed surface potential. This system is of particular interest in view of the continuing controversy over the possibility of a fluid-fluid phase separation in aqueous colloidal suspensions with monovalent counterions. The condition of fixed surface potential allows in a natural way to account for the colloidal charge renormalization. In a first approach, we assess the importance of the so called ``volume terms'', and find that in the absence of salt, charge renormalization is sufficient to stabilize suspension against a fluid-fluid phase separation. Presence of salt, on the other hand, is found to lead to an instability. A very strong dependence on the approximations used, however, puts the reality of this phase transition in a serious doubt. To further understand the nature of the instability we next study a Jellium-like approximation, which does not lead to a phase separation and produces a relatively accurate analytical equation of state for a deionized suspensions of highly charged colloidal spheres. A critical analysis of various theories of strongly asymmetric electrolytes is presented to asses their reliability as compared to the Monte Carlo simulations
    corecore