11 research outputs found

    Review of intelligence for additive and subtractive manufacturing: current status and future prospects

    Get PDF
    Additive manufacturing (AM), an enabler of Industry 4.0, recently opened limitless possibilities in various sectors covering personal, industrial, medical, aviation and even extra-terrestrial applications. Although significant research thrust is prevalent on this topic, a detailed review covering the impact, status, and prospects of artificial intelligence (AI) in the manufacturing sector has been ignored in the literature. Therefore, this review provides comprehensive information on smart mechanisms and systems emphasizing additive, subtractive and/or hybrid manufacturing processes in a collaborative, predictive, decisive, and intelligent environment. Relevant electronic databases were searched, and 248 articles were selected for qualitative synthesis. Our review suggests that significant improvements are required in connectivity, data sensing, and collection to enhance both subtractive and additive technologies, though the pervasive use of AI by machines and software helps to automate processes. An intelligent system is highly recommended in both conventional and non-conventional subtractive manufacturing (SM) methods to monitor and inspect the workpiece conditions for defect detection and to control the machining strategies in response to instantaneous output. Similarly, AM product quality can be improved through the online monitoring of melt pool and defect formation using suitable sensing devices followed by process control using machine learning (ML) algorithms. Challenges in implementing intelligent additive and subtractive manufacturing systems are also discussed in the article. The challenges comprise difficulty in self-optimizing CNC systems considering real-time material property and tool condition, defect detections by in-situ AM process monitoring, issues of overfitting and underfitting data in ML models and expensive and complicated set-ups in hybrid manufacturing processes

    Tensile Behavior of Geometrically Irregular Bagasse Fiber

    No full text
    In the present work, an investigation on the surface topography and geometry variation of bagasse fibers was correlated with their mechanical properties via image analysis. The fibers were tested under a universal tensile testing machine and the diameter of the fibers was calculated using images obtained in a digital microscope. Furthermore, surface characterization and quantification were also performed using images obtained via SEM. The results showed that the surface roughness of alkali-treated bagasse fiber increased compared to that of the untreated one. Moreover, it was observed that the diameter variation of bagasse fiber along its length and among different fibers is not only variable but also unpredictable. The tensile test results revealed that bagasse fibers showed lower stress at a rupture with considerable scatter. It can be inferred that the synergistic effect of thick bagasse fiber, bagasse fiber diameter variations along its length and among fibers, and the fiber fracture mechanism establishes a local condition for fracture and resulted in such variations in tensile properties. Finally, the results clearly showed that the two-parameter Weibull fit the experimental data fairly well (R2=0.97). The Weibull modulus (m) was found to be 1.7, indicating that the strength distribution is high

    Influences of hydrogen on deformation and fracture behaviors of high Zn 7XXX aluminum alloys

    No full text
    Hydrogen degrades the mechanical properties of high strength 7XXX aluminum alloys in two ways: (i) degrades the mechanical properties by hydrogen embrittlement, and (ii) partitioned into micropores as molecular hydrogen and make contributions to ordinary ductile fracture. Themultifaceted effects of hydrogen on the mechanical properties of high Zn content 7XXX aluminum alloys during deformation and fracture is studied by using synchrotron X-ray microtomography. Our results have revealed that the hydrogen susceptibility has increased with increasing the Zn amount. High concentration of hydrogen was induced by the EDMwire eroder. This high concentrated hydrogen induces quasi-cleavage fracture and restricts the growth of micropores during ductile deformation. The threshold concentration of hydrogen ahead of the crack tip for the nucleation of quasi-cleavage featurewas estimated to be 13 cm3/100 g Al

    Influence of hydrogen on strain localization and fracture behavior in Al-Zn-Mg-Cu aluminum alloys

    No full text
    Hydrogen-induced dislocation motion is characterized in terms of the microscopic strain distribution in Al-Zn-Mg-Cu aluminum alloys. Hydrogen-induced strain localization was visualized in 3D using X-ray tomography and related microstructural tracking techniques. The strain localization was observed as a form of obliquely aligned shear bands. The strain localization becomes more intense with an increase in holding time at each loading step, indicating that more internal hydrogen is partitioned to the strain localization regions with holding time. In addition, the concentration of hydrostatic strain is observed in the strain localization region. Numerous nano voids were generated after deformation and were determined from the precise interpretation of the measured hydrostatic tension. Direct observation of the nano voids was then successfully performed by employing high-angle annular dark-field (i.e., HAADF) scanning transmission electron microscopy imaging and imaging-type computed tomography (CT) techniques. It is assumed that nano voids can serve a dual role as a fracture origin site and a hydrogen trap site. However, no evidence for hydrogen embrittlement originating from nano voids was observed. Instead, it can be assumed that the most hydrogen was partitioned to nano voids in strain localization regions during deformation due to its high density. A hydrogen embrittlement model was proposed based on these findings, where in-situ hydrogen repartitioning, which is necessary for hydrogen embrittlement to occur, is considered. Keywords X-ray tomography, Hydrogen embrittlement, Strain localization, Nano void, Al-Zn-Mg-Cu aluminum allo

    Combined microtomography, thermal desorption spectroscopy, X-ray diffraction study of hydrogen trapping behavior in 7XXX aluminum alloys

    No full text
    In the present study, combined thermal desorption spectroscopy (TDS), microtomography and X-ray diffraction study has been carried out to identify the hydrogen trap sites in 7XXX aluminum alloys. Through constant heating rate TDS experiments, three distinct trap states have been identified. It is revealed that micropores are the predominant hydrogen trap site in alloys with medium hydrogen content, whereas grain boundaries is the major hydrogen trap site in alloys with low and high hydrogen content. We have clarified that the rate of trap site occupancy in grain boundaries is high compared to dislocations and vacancies. Such high hydrogen coverage at grain boundaries indicates that the hydrogen-assisted fracture would be intergranular
    corecore