912 research outputs found

    Characterizing fruit ripening in plantain and Cavendish bananas: A proteomics approach

    Get PDF
    The fruit physiology of banana cultivars other than Cavendish is poorly understood. To study the ripening process, samples were taken daily from plantain and Cavendish bananas and the ripening stages were determined. We present data from the green to the fully mature stage. By analyzing the protein abundances during ripening we provide some new insights into the ripening process and how plantains fruits are different. Multivariate analysis of the proteins was performed correlated to the starch dynamics. A drop in sucrose synthase and a rise of acid invertase during ripening indicated a change in the balance of the sucrose fate. During ripening, sugars may no longer be available for respiration since they are stored in the vacuoles, making citrate the preferred respiratory substrate. We found significant cultivar specific differences in granule-bound starch synthase, alpha- and beta amylases and cell wall invertase when comparing the protein content at the same ripening stage. This corroborates the difference in starch content/structure between both banana types. Differences in small heat shock proteins and in the cell wall-modifying enzyme xyloglucan endotransglucosylase/hydrolase support respectively the presumed higher carotenoid content and the firmer fruit structure of plantains

    The DC Electrical Conduction Mechanism of Heat-treated Plasma-polymerized Diphenyl (PPDP) Thin Films

    Get PDF

    Study of the Dc Electrical Properties of Bijoypur White Clay of Bangladesh

    Get PDF

    Study of the Structural Modification on Heat Treatment of Bijoypur White Clay (BWC) of Bangladesh

    Get PDF

    Synthesis and Characterization of Homoleptic and Heteroleptic Ruthenium Polypyridine Complexes

    Get PDF
    The homoleptic ruthenium(II) complex Ru(C13H10N2)3(PF6)2, and heteroleptic ruthenium(II) complexes Ru(C13H10N2)2(C10H8N2)(PF6)2, and Ru(C13H10N2)(C10H8N2)2(PF6)2 have been prepared by following the standard synthetic procedure. These complexes were then purified by repeated column chromatography. The identity and the integrity of the complexes were confirmed by elemental analysis and mass spectroscopy. The calculated and the experimental values for the elemental analysis were in good agreement. The calculated and the experimental molar masses obtained were also identical. Ultravioletvisible absorption and emission spectroscopic methods were used to investigate the properties of these complexes. The absorption spectra of all complexes consist of a series of absorption bands in the ultraviolet and visible region. All three complexes show a strong emission band in the visible region. The emission maxima for the heteroleptic complexes are slightly redshifted

    Sudden cardiac death among general population and sport related population in forensic experience.

    Get PDF
    PURPOSE: The goal of the study was to assess the causes and analyze the cases of sudden cardiac death (SCD) victims referred to the department of forensic medicine in Lausanne, with a particular focus on sports-related fatalities including also leisure sporting activities. To date, no such published assessment has been done nor for Switzerland nor for the central Europe. METHODS: This is a retrospective study based on autopsy records of SCD victims, from 10 to 50 years of age, performed at the University Centre of Legal Medicine in Lausanne from 1995 to 2010. The study population was divided into two groups: sport-related (SR) and not sport-related (NSR) SCDs. RESULTS: During the study period, 188 cases of SCD were recorded: 166 (88%) were NSR and 22 (12%) SR. The mean age of the 188 victims was 37.3 ± 10.1 years, with the majority of the cases being male (79%). A cause of death was established in 84%, and the pathology responsible for death varied according to the age of the victims. In the NSR group, the mean age was 38.2 ± 9.2 years and there was 82% of male. Coronary artery disease (CAD) was the main diagnosis in the victims aged 30-50 years. The majority of morphologically normal hearts were observed in the 15-29 year age range. There was no case in the 10-14 year age range. In the SR group, 91% of victims died during leisure sporting activities. In this group the mean age was 30.5 ± 13.5 years, with the majority being male (82%). The main cause of death was CAD, with 6 cases (27%) and a mean age of 40.8 ± 5.5 years. The youngest victim with CAD was 33 years old. A morphologically normal heart was observed in 5 cases (23%), with a mean age of 24.4 ± 14.9 years. The most frequently implicated sporting activities were hiking (26%) and swimming (17%). CONCLUSION: In this study, CAD was the most common cause of death in both groups. Although this pathology most often affects adults over 35 years of age, there were also some victims under 35 years of age in both groups. SCDs during sport are mostly related to leisure sporting activities, for which preventive measures are not yet usually established. This study highlights also the need to inform both athletes and non athletes of the cardiovascular risks during sport activities and the role of a forensic autopsy and registries involving forensic pathologists for SR SCD

    Calculation of Thermodynamic and Transport Properties of Less Simple Metals

    Get PDF

    Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes

    Get PDF
    In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc),O-linked-GlcNAc transferase (OGT) catalyzes Ser/ThrO-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase-protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-translational modification within one enzyme. Although occurring within the same active site, we show here that glycosylation and proteolysis occur through separable mechanisms. OGT consists of tetratricopeptide repeat (TPR) and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and proteolysis. Nevertheless, a specific TPR domain contact with the HCF-1 substrate is critical for proteolysis but not Ser/Thr glycosylation. In contrast, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation are irrelevant for proteolysis. Thus, from a dual glycosyltransferase-protease, essentially single-activity enzymes can be engineered both in vitro and in vivo. Curiously, whereas OGT-mediated HCF-1 proteolysis is limited to vertebrate species, invertebrate OGTs can cleave human HCF-1. We present a model for the evolution of HCF-1 proteolysis by OGT
    corecore