29 research outputs found

    Intravascular Neutrophil Activation Due to Carbon Monoxide Poisoning

    No full text
    Rationale: We hypothesized that platelet–neutrophil interactions occur as a result of acute carbon monoxide (CO) poisoning, and subsequent neutrophil activation triggers events that cause neurologic sequelae

    Lactate Stimulates Vasculogenic Stem Cells via the Thioredoxin System and Engages an Autocrine Activation Loop Involving Hypoxia-Inducible Factor 1â–ż

    No full text
    The recruitment and differentiation of circulating stem/progenitor cells (SPCs) in subcutaneous Matrigel in mice was assessed. There were over one million CD34+ SPCs per Matrigel plug 18 h after Matrigel implantation, and including a polymer to elevate the lactate concentration increased the number of SPCs by 3.6-fold. Intricate CD34+ cell-lined channels were linked to the systemic circulation, and lactate accelerated cell differentiation as evaluated based on surface marker expression and cell cycle entry. CD34+ SPCs from lactate-supplemented Matrigel exhibited significantly higher concentrations of thioredoxin 1 (Trx1) and hypoxia-inducible factor 1 (HIF-1) than cells from unsupplemented Matrigel, whereas Trx1 and HIF-1 in CD45+ leukocytes were not elevated by lactate. Results obtained using small inhibitory RNA (siRNA) specific to HIF-1 and mice with conditionally HIF-1 null myeloid cells indicated that SPC recruitment and lactate-mediated effects were dependent on HIF-1. Cells from lactate-supplemented Matrigel had higher concentrations of phosphorylated extracellular signal-regulated kinases 1 and 2, Trx1, Trx reductase (TrxR), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1) than cells from unsupplemented Matrigel. SPC recruitment and protein changes were inhibited by siRNA specific to lactate dehydrogenase, TrxR, or HIF-1 and by oxamate, apocynin, U0126, N-acetylcysteine, dithioerythritol, and antibodies to VEGF or SDF-1. Oxidative stress from lactate metabolism by SPCs accelerated further SPC recruitment and differentiation through Trx1-mediated elevations in HIF-1 levels and the subsequent synthesis of HIF-1-dependent growth factors

    Hyperbaric oxygen stimulates vasculogenic stem cell growth and differentiation in vivo

    No full text
    We hypothesized that oxidative stress from hyperbaric oxygen (HBO2, 2.8 ATA for 90 min daily) exerts a trophic effect on vasculogenic stem cells. In a mouse model, circulating stem/progenitor cell (SPC) recruitment and differentiation in subcutaneous Matrigel were stimulated by HBO2 and by a physiological oxidative stressor, lactate. In combination, HBO2 and lactate had additive effects. Vascular channels lined by CD34+ SPCs were identified. HBO2 and lactate accelerated channel development, cell differentiation based on surface marker expression, and cell cycle entry. CD34+ SPCs exhibited increases in thioredoxin-1 (Trx1), Trx reductase, hypoxia-inducible factors (HIF)-1, -2, and -3, phosphorylated mitogen-activated protein kinases, vascular endothelial growth factor, and stromal cell-derived factor-1. Cell recruitment to Matrigel and protein synthesis responses were abrogated by N-acetyl cysteine, dithioerythritol, oxamate, apocynin, U-0126, neutralizing anti-vascular endothelial growth factor, or anti-stromal cell-derived factor-1 antibodies, and small inhibitory RNA to Trx reductase, lactate dehydrogenase, gp91phox, HIF-1 or -2, and in mice conditionally null for HIF-1 in myeloid cells. By causing an oxidative stress, HBO2 activates a physiological redox-active autocrine loop in SPCs that stimulates vasculogenesis. Thioredoxin system activation leads to elevations in HIF-1 and -2, followed by synthesis of HIF-dependent growth factors. HIF-3 has a negative impact on SPCs

    Elevations of Extracellular Vesicles and Inflammatory Biomarkers in Closed Circuit SCUBA Divers

    No full text
    Blood-borne extracellular vesicles and inflammatory mediators were evaluated in divers using a closed circuit rebreathing apparatus and custom-mixed gases to diminish some diving risks. “Deep” divers (n = 8) dove once to mean (±SD) 102.5 ± 1.2 m of sea water (msw) for 167.3 ± 11.5 min. “Shallow” divers (n = 6) dove 3 times on day 1, and then repetitively over 7 days to 16.4 ± 3.7 msw, for 49.9 ± 11.9 min. There were statistically significant elevations of microparticles (MPs) in deep divers (day 1) and shallow divers at day 7 that expressed proteins specific to microglia, neutrophils, platelets, and endothelial cells, as well as thrombospondin (TSP)-1 and filamentous (F-) actin. Intra-MP IL-1β increased by 7.5-fold (p < 0.001) after day 1 and 41-fold (p = 0.003) at day 7. Intra-MP nitric oxide synthase-2 (NOS2) increased 17-fold (p < 0.001) after day 1 and 19-fold (p = 0.002) at day 7. Plasma gelsolin (pGSN) levels decreased by 73% (p < 0.001) in deep divers (day 1) and 37% in shallow divers by day 7. Plasma samples containing exosomes and other lipophilic particles increased from 186% to 490% among the divers but contained no IL-1β or NOS2. We conclude that diving triggers inflammatory events, even when controlling for hyperoxia, and many are not proportional to the depth of diving

    Elevations of Extracellular Vesicles and Inflammatory Biomarkers in Closed Circuit SCUBA Divers.

    No full text
    Blood-borne extracellular vesicles and inflammatory mediators were evaluated in divers using a closed circuit rebreathing apparatus and custom-mixed gases to diminish some diving risks. "Deep" divers (n = 8) dove once to mean (±SD) 102.5 ± 1.2 m of sea water (msw) for 167.3 ± 11.5 min. "Shallow" divers (n = 6) dove 3 times on day 1, and then repetitively over 7 days to 16.4 ± 3.7 msw, for 49.9 ± 11.9 min. There were statistically significant elevations of microparticles (MPs) in deep divers (day 1) and shallow divers at day 7 that expressed proteins specific to microglia, neutrophils, platelets, and endothelial cells, as well as thrombospondin (TSP)-1 and filamentous (F-) actin. Intra-MP IL-1β increased by 7.5-fold (p < 0.001) after day 1 and 41-fold (p = 0.003) at day 7. Intra-MP nitric oxide synthase-2 (NOS2) increased 17-fold (p < 0.001) after day 1 and 19-fold (p = 0.002) at day 7. Plasma gelsolin (pGSN) levels decreased by 73% (p < 0.001) in deep divers (day 1) and 37% in shallow divers by day 7. Plasma samples containing exosomes and other lipophilic particles increased from 186% to 490% among the divers but contained no IL-1β or NOS2. We conclude that diving triggers inflammatory events, even when controlling for hyperoxia, and many are not proportional to the depth of diving.info:eu-repo/semantics/publishe
    corecore