16 research outputs found

    Elevated Systemic and Parasite—Antigen Stimulated Levels of Type III IFNs in a Chronic Helminth Infection and Reversal Following Anthelmintic Treatment

    Get PDF
    Type III IFNs are important players in immunity to viral and bacterial infections. However, their association with helminth infections has not been examined. To explore the association of Type III IFNs with Strongyloides stercoralis (Ss) infection, we examined the systemic levels of IFN lambda-1, IFN lambda-2 and IFN lambda-3, IL-10, and CXCL10/IP-10 in Ss infected (INF, n = 44), helminth—uninfected (UN, n = 44) and in post-treatment INF individuals. We also examined the levels of IFN lambda-1, IFN lambda-2 and IFN lambda-3, IL-10, and CXCL10/IP-10 in whole blood culture supernatants stimulated with Ss somatic antigens, or PPD or LPS. Finally, we performed correlations of systemic Type III IFN levels with absolute numbers of dendritic cell subsets. Ss infection is characterized by elevated systemic levels of IFN lambda-1, IFN lambda-2 and IFN lambda-3, IL-10, and CXCL10/IP-10 in comparison to UN individuals and a significant reduction following anthelmintic treatment. Ss infection is also characterized by elevated levels of unstimulated or Ss antigen stimulated levels of IFN lambda-1, IFN lambda-2 and IFN lambda-3, CXCL10/IP-10 and a significant reduction following treatment. In addition, Ss infection is characterized by increased numbers of plasmacytoid and myeloid dendritic cells in comparison to UN individuals, with a significant reduction following anthelmintic treatment of INF individuals. Finally, Ss infection exhibits a significant positive correlation between the systemic levels of IFN lambda-2 and IFN lambda-3 and the numbers of plasmacytoid dendritic cells. Thus, Ss infection is characterized by elevations in systemic and antigen—induced levels of Type III IFNs, which is positively associated with the numbers of plasmacytoid dendritic cells and reversed upon anthelmintic treatment

    Anthelmintic Therapy Modifies the Systemic and Mycobacterial Antigen-Stimulated Cytokine Profile in Helminth-Latent Mycobacterium tuberculosis Coinfection

    Get PDF
    Helminth infections are known to modulate cytokine responses in latent tuberculosis (LTB). However, very few studies have examined whether this modulation is reversible upon anthelmintic therapy. We measured the systemic and mycobacterial (TB) antigen-stimulated levels of type 1, type 2, type 17, and regulatory cytokines in individuals with LTB and with or without coexistent Strongyloides stercoralis infection before and after anthelmintic therapy. Our data reveal that individuals with LTB and coexistent S. stercoralis infection have significantly lower levels of systemic and TB antigen-stimulated type 1 (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]) and type 17 (IL-17A and/or IL-17F) cytokines and significantly higher levels of systemic but not TB antigen-stimulated type 2 (IL-4 and IL-5) and regulatory (transforming growth factor beta [TGF-β]) cytokines. Anthelmintic therapy resulted in significantly increased systemic levels of type 1 and/or type 17 cytokines and in significantly decreased systemic levels of type 2 and regulatory (IL-10 and TGF-β) cytokines. In addition, anthelmintic therapy resulted in significantly increased TB antigen-stimulated levels of type 1 cytokines only. Our data therefore confirm that the modulation of systemic and TB antigen-stimulated cytokine responses in S. stercoralis-LTB coinfection is reversible (for the most part) by anthelmintic treatment

    Coexistent Malnutrition Is Associated with Perturbations in Systemic and Antigen-Specific Cytokine Responses in Latent Tuberculosis Infection

    Get PDF
    Malnutrition, as defined by low body mass index (BMI), is a major risk factor for the development of active tuberculosis (TB), although the biological basis underlying this susceptibility remains poorly characterized. To verify whether malnutrition affects the systemic and antigen-specific cytokine levels in individuals with latent TB (LTB), we examined circulating and TB antigen-stimulated levels of cytokines in individuals with LTB and low BMI (LBMI) and compared them with those in individuals with LTB and normal BMI (NBMI). Coexistent LBMI with LTB was characterized by diminished circulating levels of type 1 (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]), type 2 (interleukin-4 [IL-4]), type 17 (IL-22), and other proinflammatory (IL-1α, IL-1β, and IL-6) cytokines but elevated levels of other type 2 (IL-5 and IL-13) and regulatory (IL-10 and transforming growth factor beta [TGF-β]) cytokines. In addition, LBMI with LTB was associated with diminished TB antigen-induced IFN-γ, TNF-α, IL-6, IL-1α, and IL-1β levels. Finally, there was a significant positive correlation between BMI values and TNF-α and IL-1β levels and a significant negative correlation between BMI values and IL-2, IL-10, and TGF-β levels in individuals with LTB. Therefore, our data reveal that latent TB with a coexistent low BMI is characterized by diminished protective cytokine responses and heightened regulatory cytokine responses, providing a potential biological mechanism for the increased risk of developing active TB

    IL-10- and TGFβ-mediated Th9 Responses in a Human Helminth Infection

    Get PDF
    Th9 cells are a subset of CD4+ T cells that express the protoypical cytokine, IL-9. Th9 cells are known to effect protective immunity in animal models of intestinal helminth infections. However, the role of Th9 cells in human intestinal helminth infections has never been examined.To examine the role of Th9 cells in Strongyloidis stercoralis (Ss), a common intestinal helminth infection, we compared the frequency of Th9 expressing IL-9 either singly (mono-functional) or co-expressing IL-4 or IL-10 (dual-functional) in Ss-infected individuals (INF) to frequencies in uninfected (UN) individuals.INF individuals exhibited a significant increase in the spontaneously expressed and/or antigen specific frequencies of both mono- and dual-functional Th9 cells as well as Th2 cells expressing IL-9 compared to UN. The differences in Th9 induction between INF and UN individuals was predominantly antigen-specific as the differences were no longer seen following control antigen or mitogen stimulation. In addition, the increased frequency of Th9 cells in response to parasite antigens was dependent on IL-10 and TGFx since neutralization of either of these cytokines resulted in diminished Th9 frequencies. Finally, following successful treatment of Ss infection, the frequencies of antigen-specific Th9 cells diminished in INF individuals, suggesting a role for the Th9 response in active Ss infection. Moreover, IL-9 levels in whole blood culture supernatants following Ss antigen stimulation were higher in INF compared to UN individuals.Thus, Ss infection is characterized by an IL-10- and TGFβ dependent expansion of Th9 cells, an expansion found to reversible by anti-helmintic treatment
    corecore