57 research outputs found

    The emergence of health inequalities in early adulthood: evidence on timing and mechanisms from a West of Scotland cohort

    Get PDF
    Background Evidence is inconsistent as to whether or not there are health inequalities in adolescence according to socio-economic position (SEP) and whether or when they emerge in early adulthood. Despite the large health inequalities literature, few studies have simultaneously compared the relative importance of ?health selection? versus ?social causation? at this life-stage. This study followed a cohort through the youth-adult transition to: (1) determine whether, and if so, when, health inequalities became evident according to both class of origin and current SEP; (2) compare the importance of health selection and social causation mechanisms; and (3) investigate whether these phenomena vary by gender. Methods Data are from a West-of-Scotland cohort, surveyed five times between age 15 (in 1987, N=1,515, response=85%) and 36. Self-reported physical and mental health were obtained at each survey. SEP was based on parental occupational class at 15, a combination of own education or occupational status at 18 and own occupational class (with an additional non-employment category) at older ages. In respect of when inequalities emerged, we used the relative index of inequality to examine associations between both parental and own current SEP and health at each age. In respect of mechanisms, path models, including SEP and health at each age, investigated both inter and intra-generational paths from SEP to health (?causation?) and from health to SEP (?selection?). Analyses were conducted separately for physical and mental health, and stratified by gender. Results Associations between both physical and mental health and parental SEP were non-significant at every age. Inequalities according to own SEP emerged for physical health at 24 and for mental health at 30. There was no evidence of selection based on physical health, but some evidence of associations between mental health in early adulthood and later SEP (intra-generational selection). Paths indicated intra-generational (males) and inter-generational (females) social causation of physical health inequalities, and intra-generational (males and females) and inter-generational (females) social causation of mental health inequalities. Conclusions The results suggest complex and reciprocal relationships between SEP and health and highlight adolescence and early adulthood as a sensitive period for this process, impacting on future life-chances and health

    Effect of Isothermal Annealing on Microstructural Morphology of Martensite in a Super-Martensitic Stainless Steel Subjected to Different Prior Conditions

    No full text
    A super-martensitic stainless steel of the Fe-Cr-Ni family was investigated for morphological changes during isothermal annealing after subjecting it to different prior conditions. The key issues during thermomechanical treatment included determination of conditions for austenite stability and reversibility and deciding the appropriate prior treatments for the cold worked alloy before subjecting it to isothermal annealing. The study evaluated the effect of isothermal annealing on the recrystallization kinetics, phase reversion, and microstructural changes in the alloy. Intercritical isothermal annealing was carried out on samples in the range 750-900 degrees C for short time periods in the range of 1-2.5min. The recrystallization behavior and microstructural changes were studied by electron backscatter diffraction, X-ray diffraction, and Vickers's hardness measurements. Martensite morphology showed significant changes during the isothermal annealing process with dependence on prior matrix substrate. The tensile properties were also evaluated. The cold rolled (CR) and isothermally annealed samples provided an improved combination of strength and ductility at the optimum heat treatment parameters

    Chemical & RNAi screening at MSKCC: A collaborative platform to discover & repurpose drugs to fight disease

    No full text
    Memorial Sloan Kettering Cancer Center (MSKCC) has implemented the creation of a full service state-of-the-art High-throughput Screening Core Facility (HTSCF) equipped with modern robotics and custom-built screening data management resources to rapidly store and query chemical and RNAi screening data outputs. The mission of the facility is to provide oncology clinicians and researchers alike with access to cost-effective HTS solutions for both chemical and RNAi screening, with an ultimate goal of novel target identification and drug discovery. HTSCF was established in 2003 to support the institution's commitment to growth in molecular pharmacology and in the realm of therapeutic agents to fight chronic diseases such as cancer. This endeavor required broad range of expertise in technology development to establish robust and innovative assays, large collections of diverse chemical and RNAi duplexes to probe specific cellular events, sophisticated compound and data handling capabilities, and a profound knowledge in assay development, hit validation, and characterization. Our goal has been to strive for constant innovation, and we strongly believe in shifting the paradigm from traditional drug discovery towards translational research now, making allowance for unmet clinical needs in patients. Our efforts towards repurposing FDA-approved drugs fructified when digoxin, identified through primary HTS, was administered in the clinic for treatment of stage Vb retinoblastoma. In summary, the overall aim of our facility is to identify novel chemical probes, to study cellular processes relevant to investigator's research interest in chemical biology and functional genomics, and to be instrumental in accelerating the process of drug discovery in academia. 2014 Bentham Science Publisher

    An arrayed RNA interference genome-wide screen identifies candidate genes involved in the MicroRNA 21 biogenesis pathway

    No full text
    MicroRNAs (miRNAs) are evolutionary conserved noncoding molecules that regulate gene expression. They influence a number of diverse biological functions, such as development and differentiation. However, their dysregulation has been shown to be associated with disease states, such as cancer. Genes and pathways regulating their biogenesis remain unknown and are highly sought after. For this purpose, we have validated a multiplexed high-content assay strategy to screen for such modulators. Here, we describe its implementation that makes use of a cell-based gain-of-function reporter assay monitoring enhanced green fluorescent protein expression under the control of miRNA 21 (miR-21); combined with measures of both cell metabolic activities through the use of Alamar Blue and cell death through imaged Hoechst-stained nuclei. The strategy was validated using a panel of known genes and enabled us to successfully progress to and complete an arrayed genome-wide short interfering RNA (siRNA) screen against the Ambion Silencer Select v4.0 library containing 64,755 siRNA duplexes covering 21,565 genes. We applied a high-stringency hit analysis method, referred to as the Bhinder-Djaballah analysis method, leading to the nomination of 1,273 genes as candidate inhibitors of the miR-21 biogenesis pathway; after several iterations eliminating those genes with only one active duplex and those enriched in seed sequence mediated off-target effects. Biological classifications revealed four major control junctions among them vesicular transport via clathrin-mediated endocytosis. Altogether, our screen has uncovered a number of novel candidate regulators that are potentially good druggable targets allowing for the discovery and development of small molecules for regulating miRNA function

    Trends and Outcomes of Cardiac Transplantation in the Lowest Urgency Candidates

    No full text
    Background Because of discrepancies between donor supply and recipient demand, the cardiac transplantation process aims to prioritize the most medically urgent patients. It remains unknown how recipients with the lowest medical urgency compare to others in the allocation process. We aimed to examine differences in clinical characteristics, organ allocation patterns, and outcomes between cardiac transplantation candidates with the lowest and highest medical urgency. Methods and Results We performed a retrospective analysis of the United Network for Organ Sharing database. Patients listed for cardiac transplantation between January 2011 and May 2020 were stratified according to status at time of transplantation. Baseline recipient and donor characteristics, waitlist survival, and posttransplantation outcomes were compared in the years before and after the 2018 allocation system change. Lower urgency patients in the old system were older (58.5 versus 56 years) and more likely female (54.4% versus 23.8%) compared with the highest urgency patients, and these trends persisted in the new system (P<0.001, all). Donors for the lowest urgency patients were more likely older, female, or have a history of cytomegalovirus, hepatitis C, or diabetes (P<0.01, all). The lowest urgency patients had longer waitlist times and under the new allocation system received organs from shorter distances with decreased ischemic times (178 miles versus 269 miles, 3.1 versus 3.5 hours; P<0.001, all). There was no difference in posttransplantation survival (P<0.01, all). Conclusions Patients transplanted as lower urgency receive hearts from donors with additional comorbidities compared with higher urgency patients, but outcomes are similar at 1 year

    Vasoactive intestinal polypeptide promotes intestinal barrier homeostasis and protection against colitis in mice.

    No full text
    Inflammatory bowel disease is a chronic gastrointestinal inflammatory disorder associated with changes in neuropeptide expression and function, including vasoactive intestinal peptide (VIP). VIP regulates intestinal vasomotor and secretomotor function and motility; however, VIP's role in development and maintenance of colonic epithelial barrier homeostasis is unclear. Using VIP deficient (VIPKO) mice, we investigated VIP's role in epithelial barrier homeostasis, and susceptibility to colitis. Colonic crypt morphology and epithelial barrier homeostasis were assessed in wildtype (WT) and VIPKO mice, at baseline. Colitic responses were evaluated following dinitrobenzene sulfonic acid (DNBS) or dextran-sodium sulfate (DSS) exposure. Mice were also treated with exogenous VIP. At baseline, VIPKO mice exhibited distorted colonic crypts, defects in epithelial cell proliferation and migration, increased apoptosis, and altered permeability. VIPKO mice also displayed reduced goblet cell numbers, and reduced expression of secreted goblet cell factors mucin 2 and trefoil factor 3. These changes were associated with reduced expression of caudal type homeobox 2 (Cdx2), a master regulator of intestinal function and homeostasis. DNBS and DSS-induced colitis were more severe in VIPKO than WT mice. VIP treatment rescued the phenotype, protecting VIPKO mice against DSS colitis, with results comparable to WT mice. In conclusion, VIP plays a crucial role in the development and maintenance of colonic epithelial barrier integrity under physiological conditions and promotes epithelial repair and homeostasis during colitis
    corecore