29 research outputs found

    The optimal succinylcholine dose for intubating emergency patients: retrospective comparative study

    Get PDF
    Background : Succinylcholine remains the drug of choice for satisfactory rapid-sequence tracheal intubation. It is not clear from the literature why the 1 mg/kg dose of succinylcholine has been traditionally used. The effective dose (ED95) of succinylcholine is less than 0.3 mg/kg. The dose of 1 mg/kg represents 3.5 to 4 times the ED95. Objectives : To compare the effect of the traditionally used 1 mg/kg of succinylcholine with lower doses of 0.6 mg/kg and 0.45 mg/kg on intubation condition regarding the onset time, duration of action, duration of abdominal fasciculation, and the intubation grading. Methods : This retrospective comparative study was carried into three groups of ASA III & IV (American Society of Anesthesiologist's Physical Status III and IV) non-prepared emergency patients who were intubated at emergency department of Hamad General Hospital, Doha, Qatar during January 1st 2007 to August 31, 2010. The Institutional Research Board (IRB) approval was obtained. This study was limited to 88 patients who received fentanyl 1 µg/kg followed by etomidate 0.3 mg/kg intravenously as induction agents and succinylcholine as a muscle relaxant agent in doses of 0.45 mg/kg, 0.6 mg/kg, or 1 mg/kg. Results : Increasing the succinylcholine dosage shortened the onset time, prolonged the duration of action, and prolonged the duration of abdominal fasciculation significantly (P<.001). Tracheal intubation was 100% successful in the three groups of patients. Conclusion : Succinylcholine dose of 0.45 mg/kg provides an optimal intubation condition in ASA III & IV emergency non-prepared patients. Duration of action of succinylcholine is dose dependent; reducing the dose allows a more rapid return of spontaneous respiration and airway reflexes

    Growth Hormone Promotes Hair Cell Regeneration in the Zebrafish (Danio rerio) Inner Ear following Acoustic Trauma

    Get PDF
    BACKGROUND: Previous microarray analysis showed that growth hormone (GH) was significantly upregulated following acoustic trauma in the zebrafish (Danio rerio) ear suggesting that GH may play an important role in the process of auditory hair cell regeneration. Our objective was to examine the effects of exogenous and endogenous GH on zebrafish inner ear epithelia following acoustic trauma. METHODOLOGY/PRINCIPAL FINDINGS: We induced auditory hair cell damage by exposing zebrafish to acoustic overstimulation. Fish were then injected intraperitoneally with either carp GH or buffer, and placed in a recovery tank for either one or two days. Phalloidin-, bromodeoxyuridine (BrdU)-, and TUNEL-labeling were used to examine hair cell densities, cell proliferation, and apoptosis, respectively. Two days post-trauma, saccular hair cell densities in GH-treated fish were similar to that of baseline controls, whereas buffer-injected fish showed significantly reduced densities of hair cell bundles. Cell proliferation was greater and apoptosis reduced in the saccules, lagenae, and utricles of GH-treated fish one day following trauma compared to controls. Fluorescent in situ hybridization (FISH) was used to examine the localization of GH mRNA in the zebrafish ear. At one day post-trauma, GH mRNA expression appeared to be localized perinuclearly around erythrocytes in the blood vessels of the inner ear epithelia. In order to examine the effects of endogenous GH on the process of cell proliferation in the ear, a GH antagonist was injected into zebrafish immediately following acoustic trauma, resulting in significantly decreased cell proliferation one day post-trauma in all three zebrafish inner ear end organs. CONCLUSIONS/SIGNIFICANCE: Our results show that exogenous GH promotes post-trauma auditory hair cell regeneration in the zebrafish ear through stimulating proliferation and suppressing apoptosis, and that endogenous GH signals are present in the zebrafish ear during the process of auditory hair cell regeneration

    Review of Journal of Cardiovascular Magnetic Resonance 2013

    Full text link
    corecore