5 research outputs found

    Stress-testing development pathways under a changing climate: water-energy-food security in the lake Malawi-Shire river system

    Get PDF
    Malawi depends on Lake Malawi outflows into the Shire River for its water, energy and food (WEF) security. We explore future WEF security risks under the combined impacts of climate change and ambitious development pathways for water use expansion. We drive a bespoke water resources model developed with stakeholder inputs, with 29 bias-corrected climate model projections, alongside stakeholder elicited development pathways, and examine impacts on stakeholder-elicited WEF sector performance metrics. Using scenario analysis, we stress-test the system, explore uncertainties, assess trade-offs between satisfying WEF metrics, and explore whether planned regulation of outflows could help satisfy metrics. While uncertainty from potential future rainfall change generates a wide range of outcomes (including no lake outflow and higher frequency of major downstream floods), we find that potential irrigation expansion in the Lake Malawi catchments could enhance the risk of very low lake levels and risk to Shire River hydropower and irrigation infrastructure performance. Improved regulation of lake outflows through the upgraded barrage does offer some risk mitigation, but trade-offs emerge between lake level management and downstream WEF sector requirements. These results highlight the need to balance Malawi's socio-economic development ambitions across sectors and within a lake-river system, alongside enhanced climate resilience. This article is part of the theme issue 'Developing resilient energy systems'

    Climate variability affects water-energy-food infrastructure performance in East Africa

    Get PDF
    The need to assess major infrastructure performance under a changing climate is widely recognized yet rarely practiced, particularly in rapidly growing African economies. Here, we consider high-stakes investments across the water, energy, and food sectors for two major river basins in a climate transition zone in Africa. We integrate detailed interpretation of observed and modeled climate-system behavior with hydrological modeling and decision-relevant performance metrics. For the Rufiji River in Tanzania, projected risks for the mid-21st century are similar to those of the present day, but for the Lake Malawi-Shire River, future risk exceeds that experienced during the 20th century. In both basins a repeat of an early-20th century multi-year drought would challenge the viability of proposed infrastructure. A long view, which emphasizes past and future changes in variability, set within a broader context of climate-information interpretation and decision making, is crucial for screening the risk to infrastructure

    Additional information on the threatened Cryptocoryne cognata Schott (Araceae): A need for reassessment of the IUCN Red List status

    No full text
    Cryptocoryne cognata Schott is a threatened species distributed in the entire Konkan stretch covering Goa, Karnataka and Maharashtra. It was rediscovered in 1990 after not being documented for one and half centuries. The data concerning its morphology, distribution and ecological preferences are presented in this paper in order to contribute to the Global Strategy for Plant Conservation (GSPC) goals and to assist taxonomists in assessing and protecting this species from extinction in future.   </div
    corecore