6,710 research outputs found

    Evolution of Compact Stars and Dark Dynamical Variables

    Get PDF
    This work is aimed to explore the dark dynamical effects of f(R,T)f(R,T) modified gravity theory on the dynamics of compact celestial star. We have taken the interior geometry as spherical star which is filled with imperfect fluid distribution. The modified field equations are explored by taking a particular form of f(R,T)f(R,T) model, i.e., f(R,T)=f1(R)+f2(R)f3(T)f(R,T)=f_1(R)+f_2(R)f_3(T). These equations are then utilized to formulate the well-known structure scalars under the dark dynamical effects of this higher order gravity theory. Also, the evolution equations for expansion and shear are formulated with the help of these scalar variables. Further, all this analysis have been made under the condition of constant RR and TT. We found a crucial significance of dark source terms and dynamical variables on the evolution and density inhomogeneity of compact objects.Comment: 18 pages, 4 figures, version accepted for publication in European Physical Journal

    Influence of f(R)f(R) Models on the Existence of Anisotropic Self-Gravitating Systems

    Full text link
    This paper aims to explore some realistic configurations of anisotropic spherical structures in the background of metric f(R)f(R) gravity, where RR is the Ricci scalar. The solutions obtained by Krori and Barua are used to examine the nature of particular compact stars with three different modified gravity models. The behavior of material variables is analyzed through plots and the physical viability of compact stars is investigated through energy conditions. We also discuss the behavior of different forces, equation of state parameter, measure of anisotropy and Tolman-Oppenheimer-Volkoff equation in the modeling of stellar structures. The comparison from our graphical representations may provide evidences for the realistic and viable f(R)f(R) gravity models at both theoretical and astrophysical scale.Comment: 23 pages, 13 figures, version accepted for publication in European Physical Journal

    Existence of Compact Structures in f(R,T)f(R,T) Gravity

    Full text link
    The present paper is devoted to investigate the possible emergence of relativistic compact stellar objects through modified f(R,T)f(R,T) gravity. For anisotropic matter distribution, we used Krori and Barura solutions and two notable and viable f(R,T)f(R,T) gravity formulations. By choosing particular observational data, we determine the values of constant in solutions for three relativistic compact star candidates. We have presented some physical behavior of these relativistic compact stellar objects and some aspects like energy density, radial as well as transverse pressure, their evolution, stability, measure of anisotropy and energy conditions.Comment: 27 pages, 13 figures, version accepted for publication in European Physical Journal
    • …
    corecore