37 research outputs found
Functions of the Unique N-terminus of a GCN5 Histone Acetylase in Toxoplasma gondii
Indiana University-Purdue University Indianapolis (IUPUI)GCN5 is a histone acetyltransferase (HAT) that remodels chromatin by acetylating lysine residues of histones. The GCN5 HAT identified in Toxoplasma gondii (TgGCN5) contains a unique N-terminal “extension” that bears no similarity to known proteins and is devoid of known protein motifs. The hypothesis of this thesis is the N-terminal extension is critical to the function of TgGCN5. Three possible roles of the N-terminus were investigated: nuclear localization, protein-protein interactions, and substrate recognition. Subcellular localization was determined via immunocytochemistry using parasites expressing recombinant forms of TgGCN5 fused to a FLAG tag. Initial studies performed with parasites expressing full length FLAG-TgGCN5 were positive for nuclear localization. Without the N-terminal extension (FLAG-ΔNT-TgGCN5) the protein remains cytoplasmic. Additional studies mapped a six amino acid motif (RKRVKR) as the nuclear localization signal (NLS). When RKRVKR is fused to a cytoplasmic protein, it gains access to the nucleus. Furthermore, we have established the NLS interacts with Toxoplasma importin α, a protein involved in nuclear trafficking. Interaction with importin α provides evidence that the TgGCN5 N-terminal extension is involved in mediating protein-protein interactions. In order to identify additional interacting proteins, FLAG affinity purification was performed on parasites expressing full length FLAG-TgGCN5 and FLAG-ΔNT-TgGCN5. Upon comparing the results of the two purifications, proteins captured with only full length TgGCN5 may be interacting with the N-terminal extension. Full length TgGCN5 affinity purification indicates an interaction with histone proteins, two different homologues of Ada2 (adapter protein reported to interact with GCN5 homologues), and several heat shock proteins. With regard to substrate recognition, the N-terminal extension of TgGCN5 is dispensable for the acetylation of non-nucleosomal histones in vitro. However, the lysine acetylated by TgGCN5 is surprisingly unique. Other GCN5 homologues preferentially acetylate lysine 14 in histone H3, but TgGCN5 exclusively acetylates lysine 18 in histone H3 and has no activity on lysine 14. Taken together, these results argue that the N-terminal extension of TgGCN5 is critical for mediating protein-protein interactions, including those responsible for trafficking the HAT to the parasite nucleus but does not appear to be required for the acetylation of non-nucleosomal histones
Temporal Dynamics of Genetically Heterogeneous Extended-Spectrum Cephalosporin-Resistant Escherichia coli Bloodstream Infections
Extended-spectrum cephalosporin-resistant Escherichia coli (ESC-R-Ec) is an urgent public health threat with sequence type clonal complex 131 (STc131), phylogroup B2 strains being particularly concerning as the dominant cause of ESC-R-Ec infections. To address the paucity of recent ESC-R-Ec molecular epidemiology data in the United States, we used whole-genome sequencing (WGS) to fully characterize a large cohort of invasive ESC-R-Ec at a tertiary care cancer center in Houston, Texas, collected from 2016 to 2020. During the study time frame, there were 1,154 index E. coli bloodstream infections (BSIs) of which 389 (33.7%) were ESC-R-Ec. Using time series analyses, we identified a temporal dynamic of ESC-R-Ec distinct from ESC-susceptible E. coli (ESC-S-Ec), with cases peaking in the last 6 months of the calendar year. WGS of 297 ESC-R-Ec strains revealed that while STc131 strains accounted for ~45% of total BSIs, the proportion of STc131 strains remained stable across the study time frame with infection peaks driven by genetically heterogeneous ESC-R-Ec clonal complexes. bla CTX-M variants accounted for most β-lactamases conferring the ESC-R phenotype (89%; 220/248 index ESC-R-Ec), and amplification of bla CTX-M genes was widely detected in ESC-R-Ec strains, particularly in carbapenem non-susceptible, recurrent BSI strains. Bla CTX-M-55 was significantly enriched within phylogroup A strains, and we identified bla CTX-M-55 plasmid-to-chromosome transmission occurring across non-B2 strains. Our data provide important information regarding the current molecular epidemiology of invasive ESC-R-Ec infections at a large tertiary care cancer center and provide novel insights into the genetic basis of observed temporal variability for these clinically important pathogens. IMPORTANCE Given that E. coli is the leading cause of worldwide ESC-R Enterobacterales infections, we sought to assess the current molecular epidemiology of ESC-R-Ec using a WGS analysis of many BSIs over a 5-year period. We identified fluctuating temporal dynamics of ESC-R-Ec infections, which have also recently been identified in other geographical regions such as Israel. Our WGS data allowed us to visualize the stable nature of STc131 over the study period and demonstrate a limited but genetically diverse group of ESC-R-Ec clonal complexes are detected during infection peaks. Additionally, we provide a widespread assessment of β-lactamase gene copy number in ESC-R-Ec infections and delineate mechanisms by which such amplifications are achieved in a diverse array of ESC-R-Ec strains. These data suggest that serious ESC-R-Ec infections are driven by a diverse array of strains in our cohort and impacted by environmental factors suggesting that community-based monitoring could inform novel preventative measures
Structural Insights Into the Molecular Mechanism of High-Level Ceftazidime-Avibactam Resistance Conferred by Cmy-185
β-Lactamases can accumulate stepwise mutations that increase their resistance profiles to the latest β-lactam agents. CMY-185 is a CMY-2-like β-lactamase and was identified in an Escherichia coli clinical strain isolated from a patient who underwent treatment with ceftazidime-avibactam. CMY-185, possessing four amino acid substitutions of A114E, Q120K, V211S, and N346Y relative to CMY-2, confers high-level ceftazidime-avibactam resistance, and accumulation of the substitutions incrementally enhances the level of resistance to this agent. However, the functional role of each substitution and their interplay in enabling ceftazidime-avibactam resistance remains unknown. Through biochemical and structural analysis, we present the molecular basis for the enhanced ceftazidime hydrolysis and impaired avibactam inhibition conferred by CMY-185. The substituted Y346 residue is a major driver of the functional evolution as it rejects primary avibactam binding due to the steric hindrance and augments oxyimino-cephalosporin hydrolysis through a drastic structural change, rotating the side chain of Y346 and then disrupting the H-10 helix structure. The other substituted residues E114 and K120 incrementally contribute to rejection of avibactam inhibition, while S211 stimulates the turnover rate of the oxyimino-cephalosporin hydrolysis. These findings indicate that the N346Y substitution is capable of simultaneously expanding the spectrum of activity against some of the latest β-lactam agents with altered bulky side chains and rejecting the binding of β-lactamase inhibitors. However, substitution of additional residues may be required for CMY enzymes to achieve enhanced affinity or turnover rate of the β-lactam agents leading to clinically relevant levels of resistance.IMPORTANCECeftazidime-avibactam has a broad spectrum of activity against multidrug-resistant Gram-negative bacteria including carbapenem-resistant Enterobacterales including strains with or without production of serine carbapenemases. After its launch, emergence of ceftazidime-avibactam-resistant strains that produce mutated β-lactamases capable of efficiently hydrolyzing ceftazidime or impairing avibactam inhibition are increasingly reported. Furthermore, cross-resistance towards cefiderocol, the latest cephalosporin in clinical use, has been observed in some instances. Here, we clearly demonstrate the functional role of the substituted residues in CMY-185, a four amino-acid variant of CMY-2 identified in a patient treated with ceftazidime-avibactam, for high-level resistance to this agent and low-level resistance to cefiderocol. These findings provide structural insights into how β-lactamases may incrementally alter their structures to escape multiple advanced β-lactam agents
High-Level Ceftazidime/Avibactam Resistance in Escherichia coli Conferred by the Novel Plasmid-Mediated β-Lactamase Cmy-185 Variant
OBJECTIVES: To characterize a blaCMY variant associated with ceftazidime/avibactam resistance from a serially collected Escherichia coli isolate.
METHODS: A patient with an intra-abdominal infection due to recurrent E. coli was treated with ceftazidime/avibactam. On Day 48 of ceftazidime/avibactam therapy, E. coli with a ceftazidime/avibactam MIC of \u3e256 mg/L was identified from abdominal drainage. Illumina and Oxford Nanopore Technologies WGS was performed on serial isolates to identify potential resistance mechanisms. Site-directed mutants of CMY β-lactamase were constructed to identify amino acid residues responsible for ceftazidime/avibactam resistance.
RESULTS: WGS revealed that all three isolates were E. coli ST410. The ceftazidime/avibactam-resistant strain uniquely acquired a novel CMY β-lactamase gene, herein called blaCMY-185, harboured on an IncI-γ/K1 conjugative plasmid. The CMY-185 enzyme possessed four amino acid substitutions relative to CMY-2, including A114E, Q120K, V211S and N346Y, and conferred high-level ceftazidime/avibactam resistance with an MIC of 32 mg/L. Single CMY-2 mutants did not confer reduced ceftazidime/avibactam susceptibility. However, double and triple mutants containing N346Y previously associated with ceftazidime/avibactam resistance in other AmpC enzymes, conferred ceftazidime/avibactam MICs ranging between 4 and 32 mg/L as well as reduced susceptibility to the newly developed cephalosporin, cefiderocol. Molecular modelling suggested that the N346Y substitution confers the reduction of avibactam inhibition due to steric hindrance between the side chain of Y346 and the sulphate group of avibactam.
CONCLUSIONS: We identified ceftazidime/avibactam resistance in E. coli associated with a novel CMY variant. Unlike other AmpC enzymes, CMY-185 appears to require an additional substitution on top of N346Y to confer ceftazidime/avibactam resistance
Humoral Immunity and Antibody Responses against Diphtheria, Tetanus, and Pneumococcus after Immune Effector Cell Therapies: A Prospective Study
Patients undergoing immune effector cell therapy (IECT) are at high risk for infections. We assessed seropositivity against pneumococcus, tetanus, and diphtheria in patients before and after IECT and the patients\u27 response to vaccination. We enrolled patients who underwent IECT from January 2020 to March 2022. Antibody levels for diphtheria, tetanus, and pneumococcus were measured before IECT, at 1 month, and 3-6 months after. Eligible patients were vaccinated after IECT. In non-seroprotected patients, we discontinued testing. Before IECT, most patients had seroprotective antibody levels against tetanus (68/69, 99%) and diphtheria (65/69, 94%), but fewer did against pneumococcus (24/67, 36%). After IECT, all patients had seroprotective antibody levels for tetanus at 1 month (68/68) and 3-6 months (56/56). For diphtheria, 65/65 patients (100%) had seroprotective antibody levels at 1 month, and 48/53 (91%) did at 3-6 months. For pneumococcus, seroprotective antibody levels were identified in 91% (21/23) of patients at 1 month and 79% (15/19) at 3-6 months following IECT. Fifteen patients received a pneumococcal vaccine after IECT, but none achieved seroprotective response. One patient received the tetanus-diphtheria vaccine and had a seroprotective antibody response. Because some patients experience loss of immunity after IECT, studies evaluating vaccination strategies post-IECT are needed
Histone Acetylase GCN5 Enters the Nucleus via Importin-α in Protozoan Parasite Toxoplasma
The histone acetyltransferase GCN5 acetylates nucleosomal histones to alter gene expression. How GCN5 gains entry into the nucleus of the cell has not been determined. We have mapped a six-amino acid motif (RKRVKR) that serves as a necessary and sufficient nuclear localization signal (NLS) for GCN5 in the protozoan pathogen Toxoplasma gondii (TgGCN5). Virtually nothing is known about nucleocytoplasmic transport in these parasites (phylum Apicomplexa), and this study marks the first demonstrated NLS delineated for members of the phylum. The TgGCN5 NLS has predictive value because it successfully identifies other nuclear proteins in three different apicomplexan genomic databases. Given the basic composition of the T. gondii NLS, we hypothesized that TgGCN5 physically interacts with importin-alpha, the main transport receptor in the importin/karyopherin nuclear import pathway. We cloned the importin-alpha gene from T. gondii (TgIMPalpha), which encodes a protein of 545 amino acids that possesses an importin-beta-binding domain and armadillo/beta-catenin-like repeats. In vitro co-immunoprecipitation experiments confirm that TgIMPalpha directly interacts with TgGCN5, but this interaction is abolished if the TgGCN5 NLS is deleted. Taken together, these data argue that TgGCN5 gains access to the parasite nucleus by interacting with TgIMPalpha. Bioinformatics analysis of the T. gondii genome reveals that other components of the importin pathway are present in the organism. This study demonstrates the utility of T. gondii as a model for the study of nucleocytoplasmic trafficking in early eukaryotic cells
Pair of Unusual GCN5 Histone Acetyltransferases and ADA2 Homologues in the Protozoan Parasite Toxoplasma gondii
GCN5 is a histone acetyltransferase (HAT) essential for development in mammals and critical to stress responses in yeast. The protozoan parasite Toxoplasma gondii is a serious opportunistic pathogen. The study of epigenetics and gene expression in this ancient eukaryote has pharmacological relevance and may facilitate the understanding of these processes in higher eukaryotes. Here we show that the disruption of T. gondii GCN5 yields viable parasites, which were subsequently employed in a proteomics study to identify gene products affected by its loss. Promoter analysis of these TgGCN5-dependent genes, which were mostly parasite specific, reveals a conserved T-rich element. The loss of TgGCN5 does not attenuate virulence in an in vivo mouse model. We also discovered that T. gondii is the only invertebrate reported to date possessing a second GCN5 (TgGCN5-B). TgGCN5-B harbors a strikingly divergent N-terminal domain required for nuclear localization. Despite high homology between the HAT domains, the two TgGCN5s exhibit differing substrate specificities. In contrast to TgGCN5-A, which exclusively targets lysine 18 of H3, TgGCN5-B acetylates multiple lysines in the H3 tail. We also identify two ADA2 homologues that interact differently with the TgGCN5s. TgGCN5-B has the potential to compensate for TgGCN5-A, which probably arose from a gene duplication unique to T. gondii. Our work reveals an unexpected complexity in the GCN5 machinery of this primitive eukaryote