31 research outputs found

    Propagation of non-linear waves in hot, ideal, and non-extensive quark-gluon plasma

    Full text link
    We study the propagation of energy density perturbation in a hot, ideal quark-gluon medium in which quarks and gluons follow the Tsallis-like momentum distributions. We have observed that a non-extensive MIT bag equation of state obtained with the help of the quantum Tsallis-like distributions gives rise to a breaking wave solution of the equation dictating the evolution of energy density perturbation. However, the breaking of waves is delayed when the value of the Tsallis q parameter and the Tsallis temperature T are higher.Comment: Matches with the version accepted by the European Physical Journal

    A random walk with heavy flavours

    Get PDF
    We focus on evaluating transport coefficients like drag and diffusion of heavy quarks (HQ) passing through Quark Gluon Plasma using perturbative QCD (pQCD). Experimental observable like nuclear suppression factor (RAA) of HQ is evaluated for both zero and non-zero baryonic chemical potential ({\mu}_B) scenarios using Fokker- Planck equation. Theoretical estimates of RAA are contrasted with experiments.Comment: Invited article in Special Issue: "Physics of Quark Gluon Plasma: An Update and Status Report" in Advances in High Energy Physic

    Dead cone due to parton virtuality

    Full text link
    A general expression for the dead cone of gluons radiated by virtual partons has been derived. The conventional dead cone for massive on-shell quarks and the dead cone for the massless virtual partons have been obtained by using different limits of the general expression. Radiative suppression due to the virtuality of initial parton jets in Heavy-Ion Collisions (HIC) has been discussed. It is observed that the suppression caused by the high virtuality is overwhelmingly large as compared to that on account of conventional dead-cone of heavy quarks. The dead cone due to virtuality may play a crucial role in explaining the observed similar suppression patterns of light and heavy quarks jets in heavy ion collisions at Relativistic Heavy Ion Collider (RHIC)

    Time Evolution of Temperature Fluctuation in a Non-Equilibrated System

    Get PDF
    The evolution equation for inhomogeneous and anisotropic temperature fluctuation inside a medium is derived within the ambit of Boltzmann Transport Equation (BTE) for a hot gas of massless particles. Also, specializing to a situation created after heavy-ion collision (HIC), we analyze the Fourier space variation of temperature fluctuation of the medium using its temperature profile. The effect of viscosity on the variation of fluctuations in the latter case is investigated and possible implications for early universe cosmology, and its connection with HICs are also explored.Comment: 5 pages, 5 figures, Minor changes in the tex

    Analytical calculations of the Quantum Tsallis thermodynamic variables

    Full text link
    In this article, we provide an account of analytical results related to the Tsallis thermodynamics that have been the subject matter of a lot of studies in the field of high-energy collisions. After reviewing the results for the classical case in the massless limit and for arbitrarily massive classical particles, we compute the quantum thermodynamic variables. For the first time, the analytical formula for the pressure of a Tsallis-like gas of massive bosons has been obtained. Hence, this article serves both as a brief review of the knowledge gathered in this area, and as an original research that forwards the existing scholarship. The results of the present paper will be important in a plethora of studies in the field of high-energy collisions including the propagation of non-linear waves generated by the traversal of high-energy particles inside the quark-gluon plasma medium showing the features of non-extensivity
    corecore